Set-theoretic solutions to the Yang–Baxter equation and generalized semi-braces
dc.contributor.author | Catino, F | |
dc.contributor.author | Colazzo, I | |
dc.contributor.author | Stefanelli, P | |
dc.date.accessioned | 2022-10-19T10:17:56Z | |
dc.date.issued | 2021-04-16 | |
dc.date.updated | 2022-10-19T09:35:32Z | |
dc.description.abstract | This paper aims to introduce a construction technique of set-theoretic solutions of the Yang-Baxter equation, called strong semilattice of solutions. This technique, inspired by the strong semilattice of semigroups, allows one to obtain new solutions. In particular, this method turns out to be useful to provide non-bijective solutions of finite order. It is well-known that braces, skew braces and semi-braces are closely linked with solutions. Hence, we introduce a generalization of the algebraic structure of semi-braces based on this new construction technique of solutions. | en_GB |
dc.description.sponsorship | Fonds voor Wetenschappelijk Onderzoek (Flanders) | en_GB |
dc.description.sponsorship | Dipartimento di Matematica e Fisica “Ennio De Giorgi” – Università del Salento | en_GB |
dc.description.sponsorship | Onderzoeksraad of Vrije Universiteit Brussel | en_GB |
dc.identifier.citation | Vol. 33, No. 3, pp. 757-772 | en_GB |
dc.identifier.doi | https://doi.org/10.1515/forum-2020-0082 | |
dc.identifier.grantnumber | G016117 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/131325 | |
dc.identifier | ORCID: 0000-0002-2713-0409 (Colazzo, Ilaria) | |
dc.language.iso | en | en_GB |
dc.publisher | De Gruyter | en_GB |
dc.rights | © 2021 Catino, Colazzo and Stefanelli, published by De Gruyter. Open access. This work is licensed under the Creative Commons Attribution 4.0 International License. | en_GB |
dc.subject | Quantum Yang-Baxter equation | en_GB |
dc.subject | set-theoretical solution | en_GB |
dc.subject | brace | en_GB |
dc.subject | skew brace | en_GB |
dc.subject | semi-brace | en_GB |
dc.subject | generalized semi-brace | en_GB |
dc.title | Set-theoretic solutions to the Yang–Baxter equation and generalized semi-braces | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2022-10-19T10:17:56Z | |
dc.identifier.issn | 0933-7741 | |
dc.description | This is the final version. Available on open access from De Gruyter via the DOI in this record. | en_GB |
dc.identifier.eissn | 1435-5337 | |
dc.identifier.journal | Forum Mathematicum | en_GB |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_GB |
dcterms.dateAccepted | 2021-03-09 | |
rioxxterms.version | VoR | en_GB |
rioxxterms.licenseref.startdate | 2021-04-16 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2022-10-19T10:14:20Z | |
refterms.versionFCD | VoR | |
refterms.dateFOA | 2022-10-19T10:18:15Z | |
refterms.panel | B | en_GB |
refterms.dateFirstOnline | 2021-04-16 |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2021 Catino, Colazzo and Stefanelli, published by De Gruyter. Open access. This work is licensed under the Creative Commons
Attribution 4.0 International License.