Show simple item record

dc.contributor.authorRamsay, J
dc.contributor.authorKattnig, DR
dc.date.accessioned2022-12-02T13:30:24Z
dc.date.issued2022-09-15
dc.date.updated2022-12-02T12:46:46Z
dc.description.abstractAdult hippocampal neurogenesis and hippocampus-dependent cognition in mice have been found to be adversely affected by hypomagnetic field exposure. The effect concurred with a reduction of reactive oxygen species in the absence of the geomagnetic field. A recent theoretical study suggests a mechanistic interpretation of this phenomenon in the framework of the Radical Pair Mechanism. According to this model, a flavin-superoxide radical pair, born in the singlet spin configuration, undergoes magnetic field-dependent spin dynamics such that the pair's recombination is enhanced as the applied magnetic field is reduced. This model has two ostensible weaknesses: a) the assumption of a singlet initial state is irreconcilable with known reaction pathways generating such radical pairs, and b) the model neglects the swift spin relaxation of free superoxide, which abolishes any magnetic sensitivity in geomagnetic/hypomagnetic fields. We here suggest that a model based on a radical triad and the assumption of a secondary radical scavenging reaction can, in principle, explain the phenomenon without unnatural assumptions, thus providing a coherent explanation of hypomagnetic field effects in biology.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Councilen_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Councilen_GB
dc.description.sponsorshipUK Defence Science and Technology Laboratoryen_GB
dc.description.sponsorshipOffice of Naval Researchen_GB
dc.description.sponsorshipLeverhulme Trusten_GB
dc.format.extente1010519-
dc.format.mediumElectronic-eCollection
dc.identifier.citationVol. 18, No. 9, article e1010519en_GB
dc.identifier.doihttps://doi.org/10.1371/journal.pcbi.1010519
dc.identifier.grantnumberEP/R021058/1en_GB
dc.identifier.grantnumberEP/V047175/1en_GB
dc.identifier.grantnumberDSTLX-474100013916en_GB
dc.identifier.grantnumberN62909-21-1-201en_GB
dc.identifier.grantnumberRPG-2020-26en_GB
dc.identifier.urihttp://hdl.handle.net/10871/131930
dc.identifierORCID: 0000-0003-4236-2627 (Kattnig, Daniel R)
dc.language.isoenen_GB
dc.publisherPublic Library of Scienceen_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/36108063en_GB
dc.rights© 2022 Ramsay, Kattnig. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en_GB
dc.subjectAnimalsen_GB
dc.subjectFlavinsen_GB
dc.subjectMagnetic Fieldsen_GB
dc.subjectMiceen_GB
dc.subjectNeurogenesisen_GB
dc.subjectReactive Oxygen Speciesen_GB
dc.subjectSuperoxidesen_GB
dc.titleRadical triads, not pairs, may explain effects of hypomagnetic fields on neurogenesis.en_GB
dc.typeArticleen_GB
dc.date.available2022-12-02T13:30:24Z
dc.identifier.issn1553-734X
exeter.place-of-publicationUnited States
dc.descriptionThis is the final version. Available from Public Library of Science via the DOI in this record. en_GB
dc.descriptionData Availability: All relevant data are within the manuscript and its Supporting information files.en_GB
dc.identifier.eissn1553-7358
dc.identifier.journalPLoS Computational Biologyen_GB
dc.relation.ispartofPLoS Comput Biol, 18(9)
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022-08-27
dc.rights.licenseCC BY
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-09-15
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-12-02T13:23:50Z
refterms.versionFCDVoR
refterms.dateFOA2022-12-02T13:30:25Z
refterms.panelBen_GB
refterms.dateFirstOnline2022-09-15


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 Ramsay, Kattnig. This is an open access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Except where otherwise noted, this item's licence is described as © 2022 Ramsay, Kattnig. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.