Show simple item record

dc.contributor.authorMrnka, M
dc.contributor.authorHendry, E
dc.contributor.authorLáčík, J
dc.contributor.authorLennon, RA
dc.contributor.authorBarr, LE
dc.contributor.authorHooper, I
dc.contributor.authorPhillips, DB
dc.date.accessioned2022-12-09T09:18:50Z
dc.date.issued2022-06-20
dc.date.updated2022-12-08T16:04:01Z
dc.description.abstractOptical systems often largely consist of empty space as diffraction effects that occur through free-space propagation can be crucial for their function. Contracting these voids offers a path to the miniaturization of a wide range of optical devices. Recently, a new optical element - coined "spaceplate"- has been proposed, which is capable of emulating the effects of diffraction over a specified propagation distance using a thinner non-local metamaterial [Reshef et al., Nat. Commun. 12, 3512 (2021)]. The compression factor of such an element is given by the ratio of the length of free-space that is replaced to the thickness of the spaceplate itself. In this work, we test a prototype spaceplate in the microwave spectral region (20-23 GHz) - the first such demonstration designed to operate in ambient air. Our device consists of a Fabry-Pérot cavity formed from two reflective metasurfaces with a compression factor that can be tuned by varying the size of perforations within each layer. Using a pair of directive horn antennas, we measure a space compression factor of up to ∼6 over a numerical aperture (NA) of 0.34 and a fractional bandwidth of 6%. We also investigate the fundamental trade-offs that exist between the compression factor, transmission efficiency, NA, and bandwidth of this single resonator spaceplate design and highlight that it can reach arbitrarily high compression factors by restricting its NA and bandwidth.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipEuropean Research Councilen_GB
dc.description.sponsorshipBrno University of Technologyen_GB
dc.description.sponsorshipRoyal Academy of Engineeringen_GB
dc.format.extent076105-
dc.identifier.citationVol. 7, article 076105en_GB
dc.identifier.doihttps://doi.org/10.1063/5.0095735
dc.identifier.grantnumberEP/R004781/1en_GB
dc.identifier.grantnumberEP/S036466/1en_GB
dc.identifier.grantnumber804626en_GB
dc.identifier.grantnumberFEKT-S-20-6526en_GB
dc.identifier.urihttp://hdl.handle.net/10871/131982
dc.identifierORCID: 0000-0002-4848-9840 (Hendry, Euan)
dc.identifierORCID: 0000-0002-5736-8610 (Hooper, Ian)
dc.identifierScopusID: 56653285200 | 6603865733 (Hooper, Ian)
dc.identifierORCID: 0000-0002-3711-4787 (Phillips, David B)
dc.language.isoenen_GB
dc.publisherAIP Publishingen_GB
dc.rights© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_GB
dc.titleSpace squeezing optics: Performance limits and implementation at microwave frequenciesen_GB
dc.typeArticleen_GB
dc.date.available2022-12-09T09:18:50Z
dc.identifier.issn2378-0967
dc.descriptionThis is the final version. Available from AIP Publishing via the DOI in this record. en_GB
dc.descriptionDATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.en_GB
dc.identifier.journalAPL Photonicsen_GB
dc.relation.ispartofAPL Photonics, 7(7)
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022-06-19
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-06-20
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-12-09T09:09:40Z
refterms.versionFCDVoR
refterms.dateFOA2022-12-09T09:18:56Z
refterms.panelBen_GB
refterms.dateFirstOnline2022-06-20


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's licence is described as © 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).