Show simple item record

dc.contributor.authorAshwin, P
dc.contributor.authorCreaser, J
dc.contributor.authorTsaneva-Atanasova, K
dc.date.accessioned2023-01-26T10:42:52Z
dc.date.issued2023-01-23
dc.date.updated2023-01-26T07:33:09Z
dc.description.abstractThe escape statistics of a gradient dynamical system perturbed by noise can be estimated using properties of the associated potential landscape. More generally, the Freidlin and Wentzell quasipotential (QP) can be used for similar purposes, but computing this is nontrivial and it is only defined relative to some starting point. In this paper we focus on computing quasipotentials for coupled bistable units, numerically solving a Hamilton- Jacobi-Bellman type problem. We analyze noise induced transitions using the QP in cases where there is no potential for the coupled system. Gates (points on the boundary of basin of attraction that have minimal QP relative to that attractor) are used to understand the escape rates from the basin, but these gates can undergo a global change as coupling strength is changed. Such a global gate-height bifurcation is a generic qualitative transition in the escape properties of parametrized nongradient dynamical systems for small noise.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipGerman Excellence Initiativeen_GB
dc.identifier.citationVol. 107(1), article 014213en_GB
dc.identifier.doihttps://doi.org/10.1103/physreve.107.014213
dc.identifier.grantnumberEP/T017856/1en_GB
dc.identifier.grantnumberEP/T018178/1en_GB
dc.identifier.grantnumber820970en_GB
dc.identifier.urihttp://hdl.handle.net/10871/132341
dc.identifierORCID: 0000-0001-7330-4951 (Ashwin, Peter)
dc.identifierScopusID: 57523243100 | 7006674602 (Ashwin, Peter)
dc.language.isoenen_GB
dc.publisherAmerican Physical Society (APS)en_GB
dc.rights© 2023 American Physical Societyen_GB
dc.titleQuasipotentials for coupled escape problems and the gate-height bifurcationen_GB
dc.typeArticleen_GB
dc.date.available2023-01-26T10:42:52Z
dc.identifier.issn2470-0045
exeter.article-number014213
dc.descriptionThis is the final version. Available from the American Physical Society via the DOI in this recorden_GB
dc.identifier.eissn2470-0053
dc.identifier.journalPhysical Review Een_GB
dc.relation.ispartofPhysical Review E, 107(1)
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2022-12-21
dcterms.dateSubmitted2022-09-27
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-12-21
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-01-26T07:33:48Z
refterms.versionFCDAM
refterms.dateFOA2023-01-26T10:43:10Z
refterms.panelBen_GB
refterms.dateFirstOnline2023-01-23


Files in this item

This item appears in the following Collection(s)

Show simple item record