The effect of cross-linker structure on interfacial interactions, polymer dynamics and network composition in an epoxy-amine resin
dc.contributor.author | Morsch, S | |
dc.contributor.author | Wand, CR | |
dc.contributor.author | Gibbon, S | |
dc.contributor.author | Irwin, M | |
dc.contributor.author | Siperstein, F | |
dc.contributor.author | Lyon, S | |
dc.date.accessioned | 2023-05-03T13:59:52Z | |
dc.date.issued | 2022-10-27 | |
dc.date.updated | 2023-05-03T13:18:13Z | |
dc.description.abstract | Understanding interactions at the polymer / metal oxide interface is central to improving the performance lifetime of corrosion resistant coatings, where network polymers commonly form via step growth mechanisms in the presence of pigments. Here we employ a holistic analytical approach encompassing ATR-FTIR, DSC and molecular dynamics simulations to consider how crosslinker structure affects adsorption and incorporation into the network, using a stoichiometric mixture of diglycidylether of bisphenol-A (DGEBA) with m-xylylenediamine (MXDA) cured in the presence of hematite (Fe2O3) and goethite (FeOOH) powders. We find that the rigid MXDA molecule has two distinct binding modes on both hematite and goethite, and that synergistic hydrogen bonding modes observed on goethite limit interconversion between the two. Moreover, we find that binding persists in fully cured composite samples, determining the levels of residual amine. In contrast to previously reported results using triethylenetetramine (TETA) crosslinkers, however, we find that the Tg of composite specimens is independent of added hematite and goethite volumes. Molecular dynamics simulations demonstrate this is due to electrostatic binding between the cationic Fe sites and electronegative heteroatoms in MXDA. This renders both amine functionalities unavailable for incorporation into the network and hence, unlike TETA, MXDA adsorption does not determine polymer dynamics. | en_GB |
dc.description.sponsorship | Engineering and Physical Sciences Research Council | en_GB |
dc.description.sponsorship | AkzoNobel | en_GB |
dc.format.extent | 155380- | |
dc.identifier.citation | Vol. 609, article 155380 | en_GB |
dc.identifier.doi | https://doi.org/10.1016/j.apsusc.2022.155380 | |
dc.identifier.grantnumber | EP/S004963/1 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/133072 | |
dc.language.iso | en | en_GB |
dc.publisher | Elsevier | en_GB |
dc.rights | © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | en_GB |
dc.subject | Epoxy -amine | en_GB |
dc.subject | Interface | en_GB |
dc.subject | ATR-FTIR | en_GB |
dc.subject | Molecular dynamics simulation | en_GB |
dc.subject | Iron-oxide | en_GB |
dc.title | The effect of cross-linker structure on interfacial interactions, polymer dynamics and network composition in an epoxy-amine resin | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2023-05-03T13:59:52Z | |
dc.identifier.issn | 0169-4332 | |
exeter.article-number | 155380 | |
dc.description | This is the final version. Available from Elsevier via the DOI in this record. | en_GB |
dc.description | Data availability: Data will be made available on request. | en_GB |
dc.identifier.eissn | 1873-5584 | |
dc.identifier.journal | Applied Surface Science | en_GB |
dc.relation.ispartof | Applied Surface Science, 609 | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_GB |
dcterms.dateAccepted | 2022-10-17 | |
rioxxterms.version | VoR | en_GB |
rioxxterms.licenseref.startdate | 2022-10-27 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2023-05-03T13:56:01Z | |
refterms.versionFCD | VoR | |
refterms.dateFOA | 2023-05-03T13:59:56Z | |
refterms.panel | B | en_GB |
refterms.dateFirstOnline | 2022-10-27 |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).