The m-step solvable anabelian geometry of number fields
dc.contributor.author | Saïdi, M | |
dc.contributor.author | Tamagawa, A | |
dc.date.accessioned | 2023-10-30T15:08:31Z | |
dc.date.issued | 2022-06-25 | |
dc.date.updated | 2023-10-30T13:49:22Z | |
dc.description.abstract | Given a number field K and an integer m≥0, let Km denote the maximal m-step solvable Galois extension of K and write GKm for the maximal m-step solvable Galois group Gal(Km/K) of K. In this paper, we prove that the isomorphy type of K is determined by the isomorphy type of GK3. Further, we prove that Km/K is determined functorially by GKm+3 (resp. GKm+4) for m≥2 (resp. m≤1. This is a substantial sharpening of a famous theorem of Neukirch and Uchida. A key step in our proof is the establishment of the so-called local theory, which in our context characterises group-theoretically the set of decomposition groups (at nonarchimedean primes) in GKm, starting from GKm+2. | en_GB |
dc.format.extent | 153-186 | |
dc.identifier.citation | Vol. 2022(789), pp. 153-186 | en_GB |
dc.identifier.doi | https://doi.org/10.1515/crelle-2022-0025 | |
dc.identifier.uri | http://hdl.handle.net/10871/134352 | |
dc.language.iso | en | en_GB |
dc.publisher | De Gruyter | en_GB |
dc.rights | © 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License | en_GB |
dc.title | The m-step solvable anabelian geometry of number fields | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2023-10-30T15:08:31Z | |
dc.identifier.issn | 0075-4102 | |
dc.description | This is the final version. Available on open access from De Gruyter via the DOI in this record | en_GB |
dc.identifier.eissn | 1435-5345 | |
dc.identifier.journal | Journal für die reine und angewandte Mathematik | en_GB |
dc.relation.ispartof | Journal für die reine und angewandte Mathematik (Crelles Journal), 2022(789) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_GB |
dcterms.dateAccepted | 2022-04-19 | |
rioxxterms.version | VoR | en_GB |
rioxxterms.licenseref.startdate | 2022-06-25 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2023-10-30T13:49:24Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2023-10-30T15:08:36Z | |
refterms.panel | B | en_GB |
refterms.dateFirstOnline | 2022-06-25 |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License