Show simple item record

dc.contributor.authorSaïdi, M
dc.contributor.authorTamagawa, A
dc.date.accessioned2023-10-30T15:08:31Z
dc.date.issued2022-06-25
dc.date.updated2023-10-30T13:49:22Z
dc.description.abstractGiven a number field K and an integer m≥0, let Km denote the maximal m-step solvable Galois extension of K and write GKm for the maximal m-step solvable Galois group Gal(Km/K) of K. In this paper, we prove that the isomorphy type of K is determined by the isomorphy type of GK3. Further, we prove that Km/K is determined functorially by GKm+3 (resp. GKm+4) for m≥2 (resp. m≤1. This is a substantial sharpening of a famous theorem of Neukirch and Uchida. A key step in our proof is the establishment of the so-called local theory, which in our context characterises group-theoretically the set of decomposition groups (at nonarchimedean primes) in GKm, starting from GKm+2.en_GB
dc.format.extent153-186
dc.identifier.citationVol. 2022(789), pp. 153-186en_GB
dc.identifier.doihttps://doi.org/10.1515/crelle-2022-0025
dc.identifier.urihttp://hdl.handle.net/10871/134352
dc.language.isoenen_GB
dc.publisherDe Gruyteren_GB
dc.rights© 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International Licenseen_GB
dc.titleThe m-step solvable anabelian geometry of number fieldsen_GB
dc.typeArticleen_GB
dc.date.available2023-10-30T15:08:31Z
dc.identifier.issn0075-4102
dc.descriptionThis is the final version. Available on open access from De Gruyter via the DOI in this recorden_GB
dc.identifier.eissn1435-5345
dc.identifier.journalJournal für die reine und angewandte Mathematiken_GB
dc.relation.ispartofJournal für die reine und angewandte Mathematik (Crelles Journal), 2022(789)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022-04-19
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-06-25
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-10-30T13:49:24Z
refterms.versionFCDAM
refterms.dateFOA2023-10-30T15:08:36Z
refterms.panelBen_GB
refterms.dateFirstOnline2022-06-25


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's licence is described as © 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License