2023 Astrophotonics Roadmap: pathways to realizing multi-functional integrated astrophotonic instruments
Jovanovic, N; Gatkine, P; Anugu, N; et al.Amezcua-Correa, R; Thakur, RB; Beichman, C; Bender, CF; Berger, J-P; Bigioli, A; Bland-Hawthorn, J; Bourdarot, G; Bradford, CM; Broeke, R; Bryant, J; Bundy, K; Cheriton, R; Cvetojevic, N; Diab, M; Diddams, SA; Dinkelaker, AN; Duis, J; Eikenberry, S; Ellis, S; Endo, A; Figer, DF; Fitzgerald, MP; Gris-Sanchez, I; Gross, S; Grossard, L; Guyon, O; Haffert, SY; Halverson, S; Harris, RJ; He, J; Herr, T; Hottinger, P; Huby, E; Ireland, M; Jenson-Clem, R; Jewell, J; Jocou, L; Kraus, S; Labadie, L; Lacour, S; Laugier, R; Ławniczuk, K; Lin, J; Leifer, S; Leon-Saval, S; Martin, G; Martinache, F; Martinod, M-A; Mazin, BA; Minardi, S; Monnier, JD; Moreira, R; Mourard, D; Nayak, AS; Norris, B; Obrzud, E; Perraut, K; Reynaud, F; Sallum, S; Schiminovich, D; Schwab, C; Serbayn, E; Soliman, S; Stoll, A; Tang, L; Tuthill, P; Vahala, K; Vasisht, G; Veilleux, S; Walter, AB; Wollack, EJ; Xin, Y; Yang, Z; Yerolatsitis, S; Zhang, Y; Zou, C-L
Date: 30 October 2023
Article
Journal
Journal of Physics: Photonics
Publisher
IOP Publishing
Publisher DOI
Abstract
Photonic technologies offer numerous functionalities that can be used to realize astrophotonic instruments. The most spectacular example to date is the ESO Gravity instrument at the Very Large Telescope in Chile that combines the light-gathering power of four 8 m telescopes through a complex photonic interferometer. Fully integrated ...
Photonic technologies offer numerous functionalities that can be used to realize astrophotonic instruments. The most spectacular example to date is the ESO Gravity instrument at the Very Large Telescope in Chile that combines the light-gathering power of four 8 m telescopes through a complex photonic interferometer. Fully integrated astrophotonic devices stand to offer critical advantages for instrument development, including extreme miniaturization when operating at the diffraction-limit, as well as integration, superior thermal and mechanical stabilization owing to the small footprint, and high replicability offering significant cost savings. Numerous astrophotonic technologies have been developed to address shortcomings of conventional instruments to date, including for example the development of photonic lanterns to convert from multimode inputs to single mode outputs, complex aperiodic fiber Bragg gratings to filter OH emission from the atmosphere, complex beam combiners to enable long baseline interferometry with for example, ESO Gravity, and laser frequency combs for high precision spectral calibration of spectrometers. Despite these successes, the facility implementation of photonic solutions in astronomical instrumentation is currently limited because of (1) low throughputs from coupling to fibers, coupling fibers to chips, propagation and bend losses, device losses, etc, (2) difficulties with scaling to large channel count devices needed for large bandwidths and high resolutions, and (3) efficient integration of photonics with detectors, to name a few. In this roadmap, we identify 24 key areas that need further development. We outline the challenges and advances needed across those areas covering design tools, simulation capabilities, fabrication processes, the need for entirely new components, integration and hybridization and the characterization of devices. To realize these advances the astrophotonics community will have to work cooperatively with industrial partners who have more advanced manufacturing capabilities. With the advances described herein, multi-functional integrated instruments will be realized leading to novel observing capabilities for both ground and space based platforms, enabling new scientific studies and discoveries.
Physics and Astronomy
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0
Except where otherwise noted, this item's licence is described as © 2023 The Author(s). Published by IOP Publishing Ltd. Open access. Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.
Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.