Show simple item record

dc.contributor.authorHe, C
dc.contributor.authorChen, X
dc.contributor.authorCollins, M
dc.contributor.authorSong, F
dc.contributor.authorHu, Y
dc.contributor.authorJiang, X
dc.contributor.authorLiu, Y
dc.contributor.authorDing, Y
dc.contributor.authorZhou, W
dc.date.accessioned2024-03-28T10:43:46Z
dc.date.issued2024-03-25
dc.date.updated2024-03-28T08:49:47Z
dc.description.abstractGeopotential height (H) is a widely used metric for atmospheric circulation. H has been reported to rise under global warming, but the amplitude and mechanism of this rise are not clear. Based on reanalysis datasets and climate models participating in CMIP6, this study quantitatively evaluates the sensitivity of H to global mean surface air temperature (Ts), i.e., dH/dTs. Reanalysis datasets and model simulations consistently show that dH/dTs increases monotonically with altitude in the troposphere, with a global averaged value of about 24.5 gpm/K at 500 hPa, which overwhelms the interannual H variability. Diagnosis based on the hypsometric equation shows that the rise in global H is dominated by expansion of the air column due to warming-induced reduction in air density, and the magnitude of dH/dTs is determined largely by a vertical integration of the warming profile below the pressure level. Since the anthropogenic forced rise in H is rather horizontally uniform and proportional to Ts change, past and projected future changes in the global H field at each pressure level can be reproduced by change in Ts multiplied by a constant historical dH/dTs value. Spatially uniform rise in H reproduces the past and projected future expansion of the widely used H = 5880 gpm contour at 500 hPa, suggesting that it does not indicate enhancement of the subtropical high but is simply caused by thermal expansion of the atmosphere. This work uncovers the physical mechanism for rising H and offers a simple way to estimate H anomaly based on Ts anomaly.en_GB
dc.description.sponsorshipGuangdong Major Project of Basic and Applied Basic Researchen_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipKey Innovation Team of China Meteorological Administrationen_GB
dc.identifier.citationPublished online 25 March 2024en_GB
dc.identifier.doihttps://doi.org/10.1007/s00382-024-07175-5
dc.identifier.grantnumber2020B0301030004en_GB
dc.identifier.grantnumber42175024en_GB
dc.identifier.grantnumber42381240299en_GB
dc.identifier.grantnumberCMA2022ZD03en_GB
dc.identifier.urihttp://hdl.handle.net/10871/135637
dc.identifierORCID: 0000-0003-3785-6008 (Collins, Matthew)
dc.language.isoenen_GB
dc.publisherSpringeren_GB
dc.relation.urlhttps://esgf-node.llnl.gov/search/cmip6en_GB
dc.relation.urlhttps://www.metoffice.gov.uk/hadobs/hadcrut5en_GB
dc.relation.urlhttps://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-meansen_GB
dc.relation.urlhttps://psl.noaa.gov/data/gridded/data.ncep.reanalysis.htmlen_GB
dc.relation.urlhttps://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.htmlen_GB
dc.relation.urlhttps://rda.ucar.edu/datasets/ds628.1/dataaccessen_GB
dc.relation.urlhttps://disc.gsfc.nasa.gov/datasets?project=MERRA-2en_GB
dc.rights.embargoreasonUnder embargo until 25 March 2025 in compliance with publisher policyen_GB
dc.rights© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024en_GB
dc.subjectGeopotential heighten_GB
dc.subjectGlobal warmingen_GB
dc.subjectThermal expansionen_GB
dc.subjectHypsometric equationen_GB
dc.titleRising geopotential height under global warmingen_GB
dc.typeArticleen_GB
dc.date.available2024-03-28T10:43:46Z
dc.identifier.issn0930-7575
dc.descriptionThis is the author accepted manuscript. The final version is available from Springer via the DOI in this recorden_GB
dc.descriptionData availability: All the datasets adopted in this study can be accessed online via the following URLs. 1. CMIP6 model data. https://esgf-node.llnl.gov/search/cmip6. 2. Met Office Hadley Centre global historical surface temperature version 5 (HadCRUT5). https://www.metoffice.gov.uk/hadobs/hadcrut5. 3. ERA5 global gridded monthly reanalysis data (ERA5). https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means. 4. NCEP/NCAR reanalysis (NCEP1). https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html. 5. NCEP/DOE reanalysis version 2 (NCEP2). https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html. 6. Japanese 55-year reanalysis (JRA55). https://rda.ucar.edu/datasets/ds628.1/dataaccess. 7 Modern-Era Retrospective Analysis for Research and Applications (MERRA2). https://disc.gsfc.nasa.gov/datasets?project=MERRA-2en_GB
dc.identifier.eissn1432-0894
dc.identifier.journalClimate Dynamicsen_GB
dc.relation.ispartofClimate Dynamics
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2024-02-21
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-03-25
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-03-28T10:39:32Z
refterms.versionFCDAM
refterms.panelBen_GB
refterms.dateFirstOnline2024-03-25


Files in this item

This item appears in the following Collection(s)

Show simple item record