Show simple item record

dc.contributor.authorHughes, DW
dc.contributor.authorMason, J
dc.contributor.authorProctor, MRE
dc.date.accessioned2024-08-27T12:10:30Z
dc.date.issued2024-10-31
dc.date.updated2024-08-27T11:31:40Z
dc.description.abstractUnderstanding the generation of large-scale magnetic fields and flows in magnetohydro-dynamical (MHD) turbulence remains one of the most challenging problems in astrophysical fluid dynamics. Although much work has been done on the kinematic generation of large-scale magnetic fields by turbulence, relatively little attention has been paid to the much more difficult problem in which fields and flows interact on an equal footing. The aim is to find conditions for long-wavelength instabilities of stationary MHD states. Here, we first revisit the formal exposition of the long-wavelength linear instability theory, showing how long-wavelength perturbations are governed by four mean field tensors; we then show how these tensors may be calculated explicitly under the ‘short-sudden’ approximation for the turbulence. For MHD states with relatively little disorder, the linear theory works well: average quantities can be readily calculated, and stability to long-wavelength perturbations determined. However, for disordered basic states, linear perturbations can grow without bound and the purely linear theory, as formulated, cannot be applied. We then address the question of whether there is a linear response for sufficiently weak mean fields and flows in a dynamical (nonlinear) evolution, where perturbations are guaranteed to be bounded. As a preliminary study, we first address the nature of the response in a series of one-dimensional maps. For the full MHD problem, we show that in certain circumstances, there is a clear linear response; however, in others, mean quantities – and hence the nature of the response – can be difficult to calculate.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.identifier.citationVol. 998, article A36en_GB
dc.identifier.doi10.1017/jfm.2024.773
dc.identifier.grantnumberEP/R014604/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/137264
dc.identifierORCID: 0000-0002-2669-0199 (Mason, Joanne)
dc.language.isoenen_GB
dc.publisherCambridge University Pressen_GB
dc.rights© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.en_GB
dc.titleMean field responses in disordered systems: an example from nonlinear MHDen_GB
dc.typeArticleen_GB
dc.date.available2024-08-27T12:10:30Z
dc.identifier.issn0022-1120
exeter.article-numberA36
dc.contributorMason, J
dc.descriptionThis is the final version. Available on open access from Cambridge University Press via the DOI in this recorden_GB
dc.identifier.eissn1469-7645
dc.identifier.journalJournal of Fluid Mechanicsen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2024-07-30
dcterms.dateSubmitted2024-03-17
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2024-07-30
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-08-27T11:31:43Z
refterms.versionFCDAM
refterms.dateFOA2024-12-04T13:24:15Z
refterms.panelBen_GB
exeter.rights-retention-statementYes


Files in this item

This item appears in the following Collection(s)

Show simple item record

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Except where otherwise noted, this item's licence is described as © The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.