Show simple item record

dc.contributor.authorHerrera, F
dc.contributor.authorBarnes, WL
dc.date.accessioned2024-11-15T09:48:10Z
dc.date.issued2024
dc.date.updated2024-11-14T15:50:42Z
dc.description.abstractRoom temperature cavity quantum electrodynamics with molecular materials in optical cavities offers exciting prospects for controlling electronic, nuclear and photonic degrees of freedom for applications in physics, chemistry and materials science. However, achieving strong coupling with molecular ensembles typically requires high molecular densities and substantial electromagnetic field confinement. These conditions usually involve a significant degree of molecular disorder and a highly structured photonic density of states. It remains unclear to what extent these additional complexities modify the usual physical picture of strong coupling developed for atoms and inorganic semiconductors. Using a microscopic quantum description of molecular ensembles in realistic multimode optical resonators, we show the that the emergence of a vacuum Rabi splitting in linear spectroscopy is a necessary but not sufficient metric of coherent admixing between light and matter. In low finesse multi-mode situations we find that molecular dipoles can be partially hybridised with photonic dissipation channels associated with off-resonant cavity modes. These vacuum-induced dissipative processes ultimately limit the extent of light-matter coherence that the system can sustain.en_GB
dc.description.sponsorshipEuropean Research Council (ERC)en_GB
dc.description.sponsorshipRoyal Societyen_GB
dc.description.sponsorshipFONDECYTen_GB
dc.description.sponsorshipMillennium Science Initiativeen_GB
dc.description.sponsorshipAir Force Office of Scientific Researchen_GB
dc.identifier.citationAwaiting citation and DOIen_GB
dc.identifier.grantnumberERC-2016-AdG-742222en_GB
dc.identifier.grantnumber1221420en_GB
dc.identifier.grantnumberICN17_012en_GB
dc.identifier.grantnumberFA9550-22-1-0245en_GB
dc.identifier.urihttp://hdl.handle.net/10871/138513
dc.identifierORCID: 0000-0002-9474-5534 (Barnes, William)
dc.language.isoenen_GB
dc.publisherThe Royal Societyen_GB
dc.relation.urlhttps://doi.org/10.24378/exe.5446en_GB
dc.rights.embargoreasonUnder temporary indefinite embargo pending publication by the Royal Society. No embargo required on publicationen_GB
dc.rights© 2024 The author(s). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.en_GB
dc.subjectstrong couplingen_GB
dc.subjectmoleculesen_GB
dc.titleMultiple Interacting Photonic Modes in Strongly Coupled Organic Microcavities (article)en_GB
dc.typeArticleen_GB
dc.date.available2024-11-15T09:48:10Z
dc.descriptionThis is the author accepted manuscript.en_GB
dc.descriptionThe dataset associated with this article is available in ORE at: https://doi.org/10.24378/exe.5446en_GB
dc.identifier.eissn1471-2962
dc.identifier.journalPhilosophical Transactions of the Royal Society Aen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2024-08-12
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-08-12
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-11-15T09:41:06Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 The author(s). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.
Except where otherwise noted, this item's licence is described as © 2024 The author(s). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.