Show simple item record

dc.contributor.authorBraam, M
dc.contributor.authorPalmer, PI
dc.contributor.authorDecin, L
dc.contributor.authorMayne, NJ
dc.contributor.authorManners, J
dc.contributor.authorRugheimer, S
dc.date.accessioned2024-11-21T13:23:20Z
dc.date.issued2024
dc.date.updated2024-11-21T12:59:31Z
dc.description.abstractTerrestrial exoplanets around M- and K-type stars are important targets for atmospheric characterisation. Such planets are likely tidally locked with the order of spin-orbit resonances (SORs) depending on eccentricity. We explore the impact of SORs on 3D atmospheric dynamics and chemistry, employing a 3D coupled Climate-Chemistry Model to simulate Proxima Centauri b in 1:1 and 3:2 SOR. For a 1:1 SOR, Proxima Centauri b is in the Rhines rotator circulation regime with dominant zonal gradients (global mean surface temperature 229 K). An eccentric 3:2 SOR warms Proxima Centauri b to 262 K with gradients in the meridional direction. We show how a complex interplay between stellar radiation, orbit, atmospheric circulation, and (photo)chemistry determines the 3D ozone distribution. Spatial variations in ozone column densities align with the temperature distribution and are driven by stratospheric circulation mechanisms. Proxima Centauri b in a 3:2 SOR demonstrates additional atmospheric variability, including daytime-nighttime cycles in water vapour of +55% to −34% and ozone (±5.2%) column densities and periastron-apoastron water vapour cycles of +17% to −10%. Synthetic emission spectra for the spectral range of the Large Interferometer For Exoplanets fluctuate by up to 36 ppm with orbital phase angle for a 1:1 SOR due to 3D spatial and temporal asymmetries. The homogeneous atmosphere for the 3:2 SOR results in relatively constant emission spectra and provides an observational discriminant from the 1:1 SOR. Our work emphasizes the importance of understanding the 3D nature of exoplanet atmospheres and associated spectral variations to determine habitability and interpret atmospheric spectra.en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipScience and Technology Facilities Council (STFC)en_GB
dc.description.sponsorshipKU Leuvenen_GB
dc.description.sponsorshipFWOen_GB
dc.description.sponsorshipUKRIen_GB
dc.description.sponsorshipLeverhulme Trusten_GB
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC)en_GB
dc.identifier.citationAwaiting citation and DOIen_GB
dc.identifier.grantnumber860470en_GB
dc.identifier.grantnumberST/V000594/1en_GB
dc.identifier.grantnumberIDN/19/028en_GB
dc.identifier.grantnumberG086217Nen_GB
dc.identifier.grantnumberST/R000395/1en_GB
dc.identifier.grantnumberMR/T040866/1en_GB
dc.identifier.grantnumberRPG-2020-82en_GB
dc.identifier.grantnumberRGPIN-2022-04588en_GB
dc.identifier.urihttp://hdl.handle.net/10871/138933
dc.identifierORCID: 0000-0001-6707-4563 (Mayne, Nathan)
dc.language.isoenen_GB
dc.publisherIOP Publishingen_GB
dc.relation.urlhttps://doi.org/10.5281/zenodo.5145604en_GB
dc.relation.urlhttps://github.com/marrickb/eccent_3dchem_PSJen_GB
dc.relation.urlhttps://www.ukca.ac.uken_GB
dc.relation.urlhttp://www.metoffice.gov.uk/research/modelling-systems/unified-modelen_GB
dc.relation.urlhttps://psg.gsfc.nasa.gov/index.phpen_GB
dc.rights.embargoreasonUnder temporary indefinite embargo pending publication by IOP Publishing. No embargo required on publicationen_GB
dc.rights© 2024 The author(s). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submissionen_GB
dc.subjectExoplanet Atmospheresen_GB
dc.subjectAtmospheric Compositionen_GB
dc.subjectAtmospheric dynamicsen_GB
dc.subjectChemical kineticsen_GB
dc.titleEarth-like exoplanets in spin-orbit resonances: climate dynamics, 3D atmospheric chemistry, and observational signaturesen_GB
dc.typeArticleen_GB
dc.date.available2024-11-21T13:23:20Z
dc.identifier.issn2632-3338
dc.descriptionThis is the author accepted manuscript.en_GB
dc.descriptionSoftware: The python packages iris (Office 2022) and aeolus (Sergeev & Zamyatina 2022) were used for the post-processing of model output. Scripts to pro cess and visualize the data are available on GitHub: https://github.com/marrickb/eccent_3dchem_PSJ. The CCM simulations were performed using the Met Office Unified Model and UK Chemistry and Aerosol model (https://www.ukca.ac.uk/), both are available for use under licence; see http://www.metoffice.gov.uk/research/modelling-systems/unified-model. The emission spectra were produced using the Planetary Spectrum Generator (Villanueva et al. 2018), see https://psg.gsfc.nasa.gov/index.php.en_GB
dc.descriptionData: The data underlying this article will be shared on reasonable request to the corresponding author, mainly motivated by the size of the data.en_GB
dc.identifier.eissn2632-3338
dc.identifier.journalPlanetary Science Journalen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2024-11-21
dcterms.dateSubmitted2024-07-17
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-11-21
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-11-21T12:59:44Z
refterms.versionFCDAM
refterms.panelBen_GB
exeter.rights-retention-statementYes


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2024 The author(s).  For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript
version arising from this submission
Except where otherwise noted, this item's licence is described as © 2024 The author(s). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission