dc.contributor.author | Johnston, H | |
dc.contributor.author | Nickel, A | |
dc.date.accessioned | 2024-12-17T14:57:20Z | |
dc.date.issued | 2026 | |
dc.date.updated | 2024-12-17T13:46:32Z | |
dc.description.abstract | Let p be an odd prime. We give an unconditional proof of the equivariant Iwasawa main conjecture for totally real fields for every admissible one-dimensional p-adic Lie extension whose Galois group has an abelian Sylow p-subgroup. Crucially, this result does not depend on the vanishing of any μ-invariant. As applications, we deduce the Coates--Sinnott conjecture away from its 2-primary part and new cases of the equivariant Tamagawa number conjecture for Tate motives. | en_GB |
dc.description.sponsorship | Deutsche Forschungsgemeinschaft (DFG) | en_GB |
dc.identifier.citation | Awaiting citation and DOI | en_GB |
dc.identifier.grantnumber | 437113 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/139391 | |
dc.identifier | ORCID: 0000-0001-5764-0840 (Johnston, Henri) | |
dc.language.iso | en | en_GB |
dc.publisher | Johns Hopkins University Press | en_GB |
dc.rights.embargoreason | Under temporary indefinite embargo pending publication by Johns Hopkins University Press. No embargo required on publication (expected early 2026 | en_GB |
dc.title | An unconditional proof of the abelian equivariant Iwasawa main conjecture and applications | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2024-12-17T14:57:20Z | |
dc.identifier.issn | 0002-9327 | |
dc.description | This is the author accepted manuscript. | en_GB |
dc.identifier.eissn | 1080-6377 | |
dc.identifier.journal | American Journal of Mathematics | en_GB |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
dcterms.dateAccepted | 2024-10-22 | |
dcterms.dateSubmitted | 2022-05-11 | |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2024-10-22 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2024-12-17T13:46:36Z | |
refterms.versionFCD | AM | |
refterms.panel | B | en_GB |