Show simple item record

dc.contributor.authorJohnston, H
dc.contributor.authorNickel, A
dc.date.accessioned2024-12-17T14:57:20Z
dc.date.issued2026
dc.date.updated2024-12-17T13:46:32Z
dc.description.abstractLet p be an odd prime. We give an unconditional proof of the equivariant Iwasawa main conjecture for totally real fields for every admissible one-dimensional p-adic Lie extension whose Galois group has an abelian Sylow p-subgroup. Crucially, this result does not depend on the vanishing of any μ-invariant. As applications, we deduce the Coates--Sinnott conjecture away from its 2-primary part and new cases of the equivariant Tamagawa number conjecture for Tate motives.en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)en_GB
dc.identifier.citationAwaiting citation and DOIen_GB
dc.identifier.grantnumber437113en_GB
dc.identifier.urihttp://hdl.handle.net/10871/139391
dc.identifierORCID: 0000-0001-5764-0840 (Johnston, Henri)
dc.language.isoenen_GB
dc.publisherJohns Hopkins University Pressen_GB
dc.rights.embargoreasonUnder temporary indefinite embargo pending publication by Johns Hopkins University Press.  No embargo required on publication (expected early 2026en_GB
dc.titleAn unconditional proof of the abelian equivariant Iwasawa main conjecture and applicationsen_GB
dc.typeArticleen_GB
dc.date.available2024-12-17T14:57:20Z
dc.identifier.issn0002-9327
dc.descriptionThis is the author accepted manuscript.en_GB
dc.identifier.eissn1080-6377
dc.identifier.journalAmerican Journal of Mathematicsen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2024-10-22
dcterms.dateSubmitted2022-05-11
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2024-10-22
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2024-12-17T13:46:36Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record