Show simple item record

dc.contributor.authorGould, Peter
dc.contributor.authorUgarte, N
dc.contributor.authorDomijan, M
dc.contributor.authorCosta, Maria
dc.contributor.authorForeman, J
dc.contributor.authorMacgregor, D
dc.contributor.authorRose, K
dc.contributor.authorGriffiths, J
dc.contributor.authorMillar, Andrew J.
dc.contributor.authorFinkenstädt, B
dc.contributor.authorPenfield, S
dc.contributor.authorRand, DA
dc.contributor.authorHalliday, KJ
dc.contributor.authorHall, AJ
dc.date.accessioned2014-02-07T13:38:27Z
dc.date.issued2013-01-01
dc.description.abstractCircadian clocks exhibit 'temperature compensation', meaning that they show only small changes in period over a broad temperature range. Several clock genes have been implicated in the temperature-dependent control of period in Arabidopsis. We show that blue light is essential for this, suggesting that the effects of light and temperature interact or converge upon common targets in the circadian clock. Our data demonstrate that two cryptochrome photoreceptors differentially control circadian period and sustain rhythmicity across the physiological temperature range. In order to test the hypothesis that the targets of light regulation are sufficient to mediate temperature compensation, we constructed a temperature-compensated clock model by adding passive temperature effects into only the light-sensitive processes in the model. Remarkably, this model was not only capable of full temperature compensation and consistent with mRNA profiles across a temperature range, but also predicted the temperature-dependent change in the level of LATE ELONGATED HYPOCOTYL, a key clock protein. Our analysis provides a systems-level understanding of period control in the plant circadian oscillator.en_GB
dc.description.sponsorshipBBSRC/EPSRC‐funded ROBuST SABR project (BB/F005237/1, BB/F005318/1, BB/F005261/1 and BB/F005296/1) led by Karen Halliday.en_GB
dc.identifier.citationVol. 9, pp. 650 -en_GB
dc.identifier.doi10.1038/msb.2013.7
dc.identifier.othermsb20137
dc.identifier.urihttp://hdl.handle.net/10871/14510
dc.language.isoenen_GB
dc.publisherNature Publishing Group: Open Access Journals - Option Ben_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/23511208en_GB
dc.relation.urlhttp://msb.embopress.org/content/9/1/650.longen_GB
dc.rightsMolecular Systems Biology is an open-access journal published by the European Molecular BiologyOrganizationandNaturePublishingGroup.Thiswork is licensed under a Creative Commons Attribution-Noncommercial- Share Alike 3.0 Unported Licence. To view a copy of this licence visit http://creativecommons.org/licenses/bync- sa/3.0/.en_GB
dc.subjectArabidopsisen_GB
dc.subjectArabidopsis Proteinsen_GB
dc.subjectCircadian Clocksen_GB
dc.subjectCryptochromesen_GB
dc.subjectDNA-Binding Proteinsen_GB
dc.subjectGene Expression Regulation, Planten_GB
dc.subjectLighten_GB
dc.subjectModels, Biologicalen_GB
dc.subjectModels, Theoreticalen_GB
dc.subjectMutationen_GB
dc.subjectPlants, Genetically Modifieden_GB
dc.subjectSignal Transductionen_GB
dc.subjectTemperatureen_GB
dc.subjectThermodynamicsen_GB
dc.subjectTranscription Factorsen_GB
dc.titleNetwork balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperaturesen_GB
dc.typeArticleen_GB
dc.date.available2014-02-07T13:38:27Z
dc.identifier.issn1744-4292
exeter.place-of-publicationEngland
dc.descriptionnotes: PMCID: PMC3619941en_GB
dc.descriptiontypes: Journal Article; Research Support, Non-U.S. Gov'ten_GB
dc.identifier.journalMolecular Systems Biologyen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record