Soft sensor development and process control of anaerobic digestion
Argyropoulos, Anastasios
Date: 15 October 2013
Publisher
University of Exeter
Degree Title
PhD in Engineering
Abstract
This thesis focuses on soft sensor development based on fuzzy logic used for
real time online monitoring of anaerobic digestion to improve methane output and for
robust fermentation. Important process parameter indicators such as pH, biogas
production, daily difference in pH and daily difference in biogas production were
used to ...
This thesis focuses on soft sensor development based on fuzzy logic used for
real time online monitoring of anaerobic digestion to improve methane output and for
robust fermentation. Important process parameter indicators such as pH, biogas
production, daily difference in pH and daily difference in biogas production were
used to infer alkalinity, a reliable indicator of process stability. Additionally, a fuzzy
logic and a rule-based controller were developed and tested with single stage
anaerobic digesters operating with cow slurry and cellulose. Alkalinity predictions
from the fuzzy logic algorithm were used by both controllers to regulate the organic
loading rate that aimed to optimise the biogas process.
The predictive performance of a software sensor determining alkalinity that
was designed using fuzzy logic and subtractive clustering and was validated against
multiple linear regression models that were developed (Partner N° 2, Rothamsted
Research 2010) for the same purpose. More accurate alkalinity predictions were
achieved by utilizing a fuzzy software sensor designed with less amount of data
compared to a multiple linear regression model whose design was based on a larger
database. Those models were utilised to control the organic loading rate of a twostage,
semi-continuously fed stirred reactor system.
Three 5l reactors without support media and three 5l reactors with different
support media (burst cell reticulated polyurethane foam coarse, burst cell reticulated
polyurethane foam medium and sponge) were operated with cow slurry for a period
of seven weeks and twenty weeks respectively. Reactors with support media were
proven to be more stable than the reactors without support media but did not exhibit
higher gas productivity. Biomass support media were found to influence digester
recovery positively by reducing the recovery period. Optimum process parameter
ranges were identified for reactors with and without support media. Increased biogas
production was found to occur when the loading rates were 3-3.5g VS/l/d and 4-5g
VS/l/d respectively. Optimum pH ranges were identified between 7.1-7.3 and 6.9-7.2
for reactors with and without support media respectively, whereas all reactors
became unstable at ph<6.9. Alkalinity levels for system stability appeared to be
above 3500 mg/l of HCO3
- for reactors without media and 3480 mg/l of HCO3
- for
reactors with support media. Biogas production was maximized when alkalinity was
3
between 3500-4500 mg/l of HCO3
- for reactors without support media and 3480-
4300 mg/l of HCO3
- for reactors with support media. Two fuzzy logic models
predicting alkalinity based on the operation of the three 5l reactors with support
media were developed (FIS I, FIS II). The FIS II design was based on a larger
database than FIS I. FIS II performance when applied to the reactor where sponge
was used as the support media was characterized by quite good MAE and bias
values of 466.53 mg/l of HCO3- and an acceptable value for R2= 0.498. The NMSE
was close to 0 with a value of 0.03 and a slightly higher FB= 0.154 than desired. The
fuzzy system robustness was tested by adding NaHCO3 to the reactor with the burst
cell reticulated polyurethane foam medium and by diluting the reactor where sponge
was used as the support media with water. FIS I and FIS II were able to follow the
system output closely in the first case, but not in the second.
FIS II functionality as an alkalinity predictor was tested through the application
on a 28l cylindrical reactor with sponge as the biomass support media treating cow
manure. If data that was recorded when severe temperature fluctuations occurred
(that highly impact digester performance), are excluded, FIS II performance can be
characterized as good by having R2= 0.54 and MAE=Bias= 587 mg/l of HCO3-.
Predicted alkalinity values followed observed alkalinity values closely during the days
that followed NaHCO3 addition and water dilution. In a second experiment a rulebased
and a Mamdani fuzzy logic controller were developed to regulate the organic
loading rate based on alkalinity predictions from FIS II. They were tested through the
operation of five 6.5l reactors with biomass support media treating cellulose. The
performance indices of MAE=763.57 mg/l of HCO3-, Bias= 398.39 mg/l of HCO3-,
R2= 0.38 and IA= 0.73 indicate a pretty good correlation between predicted and
observed values. However, although both controllers managed to keep alkalinity
within the desired levels suggested for stability (>3480 mg/l of HCO3-), the reactors
did not reach a stable state suggesting that different loading rates should be applied
for biogas systems treating cellulose.
Doctoral Theses
Doctoral College
Item views 0
Full item downloads 0