Show simple item record

dc.contributor.authorGuiver, Chris
dc.contributor.authorOpmeer, Mark R.
dc.date.accessioned2014-07-02T09:57:14Z
dc.date.issued2014-04-29
dc.description.abstractWe prove the H-infinity error bounds for Lyapunov balanced truncation and for optimal Hankel norm approximation under the assumption that the Hankel operator is nuclear. This is an improvement of the result from Glover, Curtain, and Partington [SIAM J. Control Optim., 26 (1998), pp. 863--898], where additional assumptions were made. The proof is based on convergence of the Schmidt pairs of the Hankel operator in a Sobolev space. We also give an application of this convergence theory to a numerical algorithm for model reduction by balanced truncation.en_GB
dc.identifier.citationVol. 52 (2), pp. 1366 - 1401en_GB
dc.identifier.doi10.1137/110846981
dc.identifier.urihttp://hdl.handle.net/10871/15137
dc.language.isoenen_GB
dc.publisherSociety for Industrial and Applied Mathematicsen_GB
dc.subjectinfinite-dimensional systemen_GB
dc.subjectmodel reductionen_GB
dc.subjectHankel operatoren_GB
dc.subjectrealizationen_GB
dc.subjectbalanced realizationen_GB
dc.subjectoptimal Hankel norm approximationen_GB
dc.titleModel reduction by balanced truncation for systems with nuclear Hankel operatorsen_GB
dc.typeArticleen_GB
dc.date.available2014-07-02T09:57:14Z
dc.identifier.issn0363-0129
dc.descriptionCopyright © 2014 Society for Industrial and Applied Mathematicsen_GB
dc.identifier.eissn1095-7138
dc.identifier.journalSIAM Journal on Control and Optimizationen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record