Show simple item record

dc.contributor.authorCampbell, Jack
dc.contributor.authorBerger, M.A.
dc.date.accessioned2014-11-27T15:21:17Z
dc.date.issued2014
dc.description.abstractLinking numbers, helicity integrals, twist, and writhe all describe the topology and geometry of curves and vector fields. The topology of the space the curves and fields live in, however, can affect the behaviour of these quantities. Here we examine curves and fields living in regions exterior to a sphere or in spherical shells. The winding of two curves need not be conserved because of the topology of a spherical shell. Avoiding the presence of magnetic monopoles inside the sphere is very important if magnetic helicity is to be a conserved quantity. Considerations of parallel transport are important in determining the transfer of helicity through the foot of a magnetic flux tube when it is in motion.en_GB
dc.identifier.citationVol. 544 (conference 1), article 012001en_GB
dc.identifier.doi10.1088/1742-6596/544/1/012001
dc.identifier.urihttp://hdl.handle.net/10871/15954
dc.language.isoenen_GB
dc.publisherIOP Publishingen_GB
dc.relation.urlhttp://dx.doi.org/10.1088/1742-6596/544/1/012001en_GB
dc.rightsContent from this work may be used under the terms of the Creative Commons Attribution 3.0 licence: http://creativecommons.org/licenses/by/3.0/. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en_GB
dc.titleHelicity, linking, and writhe in a spherical geometryen_GB
dc.typeArticleen_GB
dc.date.available2014-11-27T15:21:17Z
dc.identifier.issn1742-6588
exeter.article-number012001
dc.descriptionOpen Access journalen_GB
dc.identifier.eissn1742-6596
dc.identifier.journalJournal of Physics: Conference Seriesen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record