Near-infrared interferometric observation of the Herbig Ae star HD 144432 with VLTI/AMBER
Chen, L.; Kreplin, Alexander; Wang, Y.; et al.Weigelt, Gerd; Hofmann, Karl-Heinz; Kraus, Stefan; Schertl, D.; Lagarde, S.; Natta, A.; Petrov, R.; Robbe-Dubois, S.; Tatulli, E.
Date: 10 May 2012
Article
Journal
Astronomy and Astrophysics
Publisher
EDP Sciences for European Southern Observatory (ESO)
Publisher DOI
Abstract
Aims. We study the sub-AU-scale circumstellar environment of the Herbig Ae star HD 144432 with near-infrared VLTI/AMBER observations to investigate the structure of its inner dust disk.
Methods. The interferometric observations were carried out with the AMBER instrument in the H and K band. We interpret the measured H- and K-band ...
Aims. We study the sub-AU-scale circumstellar environment of the Herbig Ae star HD 144432 with near-infrared VLTI/AMBER observations to investigate the structure of its inner dust disk.
Methods. The interferometric observations were carried out with the AMBER instrument in the H and K band. We interpret the measured H- and K-band visibilities, the near- and mid-infrared visibilities from the literature, and the spectral energy distribution (SED) of HD 144432 by using geometric ring models and ring-shaped temperature-gradient disk models with power-law temperature distributions.
Results. We derive a K-band ring-fit radius of 0.17 ± 0.01 AU and an H-band radius of 0.18 ± 0.01 AU (for a distance of 145 pc). This measured K-band radius of ~0.17 AU lies in the range between the dust sublimation radius of ~0.13 AU (predicted for a dust sublimation temperature of 1500 K and gray dust) and the prediction of models including backwarming (~0.27 AU). We find that an additional extended halo component is required in both the geometric and temperature-gradient modeling. In the best-fit temperature-gradient model, the disk consists of two components. The inner part of the disk is a thin ring with an inner radius of ~0.21 AU, a temperature of ~1600 K, and a ring thickness ~0.02 AU. The outer part extends from ~1 AU to ~10 AU with an inner temperature of ~400 K. We find that the disk is nearly face-on with an inclination angle of <.
Conclusions. Our temperature-gradient modeling suggests that the near-infrared excess is dominated by emission from a narrow, bright rim located at the dust sublimation radius, while an extended halo component contributes ~6% to the total flux at 2 μm. The mid-infrared model emission has a two-component structure with ~20% of the flux originating from the inner ring and the rest from the outer parts. This two-component structure is indicative of a disk gap, which is possibly caused by the shadow of a puffed-up inner rim.
Physics and Astronomy
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0