dc.description.abstract | The realization of high performance simulation necessitates sophisticated simulation experimentation and optimization; this often requires non-trivial amounts of computing power. Distributed computing techniques and systems found in areas such as High Performance Computing (HPC), High Throughput Computing (HTC), e-infrastructures, grid and cloud computing can provide the required computing capacity for the execution of large and complex simulations. This extends the long tradition of adopting advances in distributed computing in simulation as evidenced by contributions from the parallel and distributed simulation community. There has arguably been a recent acceleration of innovation in distributed computing tools and techniques. This special issue presents the opportunity to showcase recent research that is assimilating these new advances in simulation. This special issue brings together a contemporary collection of work showcasing original research in the advancement of simulation theory and practice with distributed computing. This special issue has two parts. The first part (published in the preceding issue of the journal) included seven studies in high performance simulation that support applications including the study of epidemics, social networks, urban mobility and real-time embedded and cyber-physical systems. This second part focuses on original research in high performance simulation that supports a range of methods including DEVS, Petri nets and DES. Of the four papers for this issue, the manuscript by Bergero, et al. (2013), which was submitted, reviewed and accepted for the special issue, was published in an earlier issue of SIMULATION as the author requested early publication. | en_GB |