dc.contributor.author | Lowe, Rachel | |
dc.contributor.author | Rodo, X. | |
dc.contributor.author | Barcellos, Christovam | |
dc.contributor.author | Carvalho, Marilia Sa | |
dc.contributor.author | Coelho, Caio A.S. | |
dc.contributor.author | Bailey, Trevor C. | |
dc.contributor.author | Jupp, Tim E. | |
dc.contributor.author | Stephenson, David B. | |
dc.contributor.author | Coelho, Giovanini E. | |
dc.contributor.author | Graham, Richard J. | |
dc.contributor.author | Ramalho, W.M. | |
dc.date.accessioned | 2015-03-30T09:49:12Z | |
dc.date.issued | 2015 | |
dc.description.abstract | The problem
Brazil has reported more cases of dengue fever than anywhere else in the world this century1. Many cities have tropical and sub-tropical climate conditions that allow the dengue mosquito to thrive during warmer, wetter and more humid months, particularly in densely populated urban areas. Dengue epidemics depend on mosquito abundance, virus circulation and human susceptibility. In order to prepare for dengue epidemics, early warning systems, which take into account multiple dengue risk factors, are required to implement timely control measures. Seasonal climate forecasts provide an opportunity to anticipate dengue epidemics several months in advance ... | en_GB |
dc.description.sponsorship | European Commission’s Seventh Framework Research Programme project DENFREE | en_GB |
dc.description.sponsorship | European Commission’s Seventh Framework Research Programme project EUPORIAS | en_GB |
dc.description.sponsorship | European Commission’s Seventh Framework Research Programme project SPECS | en_GB |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico | en_GB |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) | en_GB |
dc.identifier.citation | Case Studies - 2015 | en_GB |
dc.identifier.grantnumber | 282378 | en_GB |
dc.identifier.grantnumber | 308291 | en_GB |
dc.identifier.grantnumber | 308378 | en_GB |
dc.identifier.grantnumber | 306863/2013-8 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/16630 | |
dc.language.iso | en | en_GB |
dc.publisher | UNISDR Scientific and Technical Advisory Group | en_GB |
dc.title | Dengue epidemic early warning system for Brazil | en_GB |
dc.type | Case study | en_GB |
dc.date.available | 2015-03-30T09:49:12Z | |
dc.description | Copyright © 2015 UNISDR (United Nations International Strategy for Disaster Reduction) | en_GB |
dc.identifier.journal | UNISDR Scientific and Technical Advisory Group | en_GB |