Show simple item record

dc.contributor.authorAshwin, Peter
dc.contributor.authorBurylko, Oleksandr
dc.date.accessioned2015-03-30T13:50:49Z
dc.date.issued2015
dc.description.abstractWe suggest a definition for a type of chimera state that appears in networks of indistinguishable phase oscillators. Defining a "weak chimera" as a type of invariant set showing partial frequency synchronization, we show that this means they cannot appear in phase oscillator networks that are either globally coupled or too small. We exhibit various networks of four, six, and ten indistinguishable oscillators, where weak chimeras exist with various dynamics and stabilities. We examine the role of Kuramoto-Sakaguchi coupling in giving degenerate (neutrally stable) families of weak chimera states in these example networks.en_GB
dc.identifier.citationVol. 25 (1), article 013106en_GB
dc.identifier.doi10.1063/1.4905197
dc.identifier.urihttp://hdl.handle.net/10871/16632
dc.language.isoenen_GB
dc.publisherAmerican Institute of Physics (AIP)en_GB
dc.relation.urlhttp://dx.doi.org/10.1063/1.4905197en_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/25637917en_GB
dc.subjectCoupled oscillatorsen_GB
dc.subjectBifurcationsen_GB
dc.subjectAttractorsen_GB
dc.subjectSubspacesen_GB
dc.subjectChaotic dynamicsen_GB
dc.titleWeak chimeras in minimal networks of coupled phase oscillatorsen_GB
dc.typeArticleen_GB
dc.date.available2015-03-30T13:50:49Z
dc.identifier.issn1054-150
exeter.place-of-publicationUnited States
dc.descriptionCopyright © 2015 AIP Publishingen_GB
dc.identifier.eissn1089-7682
dc.identifier.journalChaosen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record