Show simple item record

dc.contributor.authorMatyjaszkiewicz, Antoni
dc.contributor.authorVenturi, Elisa
dc.contributor.authorO'Brien, Fiona
dc.contributor.authorIida, Tsunaki
dc.contributor.authorNishi, Miyuki
dc.contributor.authorTakeshima, Hiroshi
dc.contributor.authorTsaneva-Atanasova, Krasimira
dc.contributor.authorSitsapesan, Rebecca
dc.date.accessioned2015-07-28T09:43:03Z
dc.date.issued2015-07-21
dc.description.abstractSarcoplasmic reticulum (SR) K+ channels are voltage-regulated channels that are thought to be actively gating when the membrane potential across the SR is close to zero as is expected physiologically. A characteristic of SR K+ channels is that they gate to subconductance open states but the relevance of the subconductance events and their contribution to the overall current flowing through the channels at physiological membrane potentials is not known. We have investigated the relationship between subconductance and full conductance openings and developed kinetic models to describe the voltage sensitivity of channel gating. Because there may be two subtypes of SR K+ channels (TRIC-A and TRIC-B) present in most tissues, to conduct our study on a homogeneous population of SR K+ channels, we incorporated SR vesicles derived from Tric-a knockout mice into artificial membranes to examine the remaining SR K+ channel (TRIC-B) function. The channels displayed very low open probability (Po) at negative potentials (≤0 mV) and opened predominantly to subconductance open states. Positive holding potentials primarily increased the frequency of subconductance state openings and thereby increased the number of subsequent transitions into the full open state, although a slowing of transitions back to the sublevels was also important. We investigated whether the subconductance gating could arise as an artifact of incomplete resolution of rapid transitions between full open and closed states; however, we were not able to produce a model that could fit the data as well as one that included multiple distinct current amplitudes. Our results suggest that the apparent subconductance openings will provide most of the K+ flux when the SR membrane potential is close to zero. The relative contribution played by openings to the full open state would increase if negative charge developed within the SR thus increasing the capacity of the channel to compensate for ionic imbalances.en_GB
dc.description.sponsorshipBritish Heart Foundationen_GB
dc.description.sponsorshipJapan Society for the Promotion of Science (Core to Core Program)en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.identifier.citationVol. 109 (2), pp. 265 - 276en_GB
dc.identifier.doi10.1016/j.bpj.2015.06.020
dc.identifier.grantnumberEP/E501214/1en_GB
dc.identifier.grantnumberEP/L000296/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/17967
dc.language.isoenen_GB
dc.publisherBiophysical Society / Elsevier (Cell Press)en_GB
dc.rightsCopyright © 2015 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_GB
dc.titleSubconductance Gating and Voltage Sensitivity of Sarcoplasmic Reticulum K+ Channels: A Modeling Approachen_GB
dc.typeArticleen_GB
dc.date.available2015-07-28T09:43:03Z
dc.identifier.issn0006-3495
dc.descriptionOpen Access articleen_GB
dc.identifier.eissn1542-0086
dc.identifier.journalBiophysical Journalen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record