dc.contributor.author | Byott, Nigel P. | |
dc.date.accessioned | 2015-09-28T11:59:49Z | |
dc.date.issued | 2015-09-15 | |
dc.description.abstract | Let $L/K$ be a finite Galois extension of fields with group $\Gamma$. Associated to each Hopf-Galois structure on $L/K$ is a group $G$ of the same order as the Galois group $\Gamma$. The {\em type} of the Hopf-Galois structure is by definition the isomorphism type of $G$. We investigate the extent to which general properties of either of the groups $\Gamma$ and $G$ constrain those of the other. Specifically, we show that if $G$ is nilpotent then $\Gamma$ is soluble, and that if $\Gamma$ is abelian then $G$ is soluble. In contrast to these results, we give some examples where the groups $\Gamma$ and $G$ have different composition factors. In particular, we show that a soluble extension may admit a Hopf-Galois structure of insoluble type. | en_GB |
dc.identifier.citation | Vol. 21, pp. 883 - 903 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/18327 | |
dc.language.iso | en | en_GB |
dc.publisher | Electronic Journals Project | en_GB |
dc.relation.url | http://nyjm.albany.edu/j/2015/21-40.html | en_GB |
dc.subject | Hopf-Galois structure | en_GB |
dc.subject | soluble group | en_GB |
dc.subject | simple group | en_GB |
dc.title | Solubility criteria for Hopf-Galois structures | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2015-09-28T11:59:49Z | |
dc.identifier.issn | 1076-9803 | |
exeter.place-of-publication | USA | |
dc.description | Published | en_GB |
dc.description | Article | en_GB |
dc.description | This is an open access article. This paper is available via http://nyjm.albany.edu/j/2015/21-40.html. | en_GB |
dc.identifier.journal | New York Journal of Mathematics | en_GB |