Show simple item record

dc.contributor.authorByott, Nigel P.
dc.date.accessioned2015-09-28T11:59:49Z
dc.date.issued2015-09-15
dc.description.abstractLet $L/K$ be a finite Galois extension of fields with group $\Gamma$. Associated to each Hopf-Galois structure on $L/K$ is a group $G$ of the same order as the Galois group $\Gamma$. The {\em type} of the Hopf-Galois structure is by definition the isomorphism type of $G$. We investigate the extent to which general properties of either of the groups $\Gamma$ and $G$ constrain those of the other. Specifically, we show that if $G$ is nilpotent then $\Gamma$ is soluble, and that if $\Gamma$ is abelian then $G$ is soluble. In contrast to these results, we give some examples where the groups $\Gamma$ and $G$ have different composition factors. In particular, we show that a soluble extension may admit a Hopf-Galois structure of insoluble type.en_GB
dc.identifier.citationVol. 21, pp. 883 - 903en_GB
dc.identifier.urihttp://hdl.handle.net/10871/18327
dc.language.isoenen_GB
dc.publisherElectronic Journals Projecten_GB
dc.relation.urlhttp://nyjm.albany.edu/j/2015/21-40.htmlen_GB
dc.subjectHopf-Galois structureen_GB
dc.subjectsoluble groupen_GB
dc.subjectsimple groupen_GB
dc.titleSolubility criteria for Hopf-Galois structuresen_GB
dc.typeArticleen_GB
dc.date.available2015-09-28T11:59:49Z
dc.identifier.issn1076-9803
exeter.place-of-publicationUSA
dc.descriptionPublisheden_GB
dc.descriptionArticleen_GB
dc.descriptionThis is an open access article. This paper is available via http://nyjm.albany.edu/j/2015/21-40.html.en_GB
dc.identifier.journalNew York Journal of Mathematicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record