Show simple item record

dc.contributor.authorHaworth, Thomas
dc.contributor.authorHarries, Tim J.
dc.contributor.authorAcreman, David M.
dc.contributor.authorBisbas, TG
dc.date.accessioned2015-11-27T10:05:44Z
dc.date.issued2015-11-01
dc.description.abstractRadiation hydrodynamics (RHD) simulations are used to study many astrophysical phenomena; however, they require the use of simplified radiation transport and thermal prescriptions to reduce computational cost. In this paper, we present a systematic study of the importance of microphysical processes in RHD simulations using the example of D-type H ii region expansion. We compare the simplest hydrogen-only models with those that include: ionization of H, He, C, N, O, S and Ne, different gas metallicity, non-LTE metal-line-blanketed stellar spectral models of varying metallicity, radiation pressure, dust and treatment of photodissociation regions. Each of these processes is explicitly treated using modern numerical methods rather than parametrization. In line with expectations, changes due to microphysics in either the effective number of ionizing photons or the thermal structure of the gas lead to differences in D-type expansion. In general, we find that more realistic calculations lead to the onset of D-type expansion at smaller radii and a slower subsequent expansion. Simulations of star-forming regions using simplified microphysics are therefore likely overestimating the strength of radiative feedback. We find that both variations in gas metallicity and the inclusion of dust can affect the ionization front evolution at the 10–20 per cent level over 500 kyr, which could substantially modify the results of simplified 3D models including feedback. Stellar metallicity, radiation pressure and the inclusion of photodissociation regions are all less-significant effects at the 1 per cent level or less, rendering them of minor importance in the modelling the dynamical evolution of H ii regions.en_GB
dc.description.sponsorshipScience & Technology Facilities Council (STFC)en_GB
dc.description.sponsorshipDiRAC HPC facility machines Zen (Exeter) and Complexity (Leicester)en_GB
dc.description.sponsorshipNordita programme on PhotoEvaporation inAstrophysical Systemsen_GB
dc.identifier.citationVol. 453, Iss.3, pp. 2278 - 2290en_GB
dc.identifier.doi10.1093/mnras/stv1814
dc.identifier.grantnumberST/K000985/1en_GB
dc.identifier.grantnumberST/J001627/1en_GB
dc.identifier.grantnumberST/J001511/1en_GB
dc.identifier.grantnumberST/K001590/1en_GB
dc.identifier.grantnumberST/H008861/1en_GB
dc.identifier.grantnumberST/H00887X/1en_GB
dc.identifier.grantnumberST/K00333X/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/18797
dc.language.isoenen_GB
dc.publisherOxford University Press for Royal Astronomical Societyen_GB
dc.relation.urlhttp://mnras.oxfordjournals.org/content/453/3/2277en_GB
dc.subjectISM: kinematics and dynamicsen_GB
dc.subjectH ii regionsen_GB
dc.subjectISM: cloudsen_GB
dc.subjectISM: bubblesen_GB
dc.subjectstars: formationen_GB
dc.subjectmethods: numericalen_GB
dc.titleOn the relative importance of different microphysics on the D-type expansion of galactic H ii regionsen_GB
dc.typeArticleen_GB
dc.date.available2015-11-27T10:05:44Z
dc.identifier.issn0035-8711
dc.descriptionThis article has been accepted for publication in MNRAS Copyright © 2015 Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.en_GB
dc.identifier.journalMonthly Notices of the Royal Astronomical Societyen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record