Show simple item record

dc.contributor.authorJones, Samuel Edward
dc.contributor.authorGilbert, Andrew D.
dc.date.accessioned2015-11-27T11:57:01Z
dc.date.issued2013-09-25
dc.description.abstractThis paper concerns kinematic dynamo action by the 1:1:1 ABC flow, in the highly conducting limit of large magnetic Reynolds number Rm. The flow possesses 24 symmetries, with a symmetry group isomorphic to the group O24 of orientation preserving transformations of a cube. This can be exploited to break up the linear eigenvalue problem into five distinct symmetry classes, or irreducible representations, which we label I–V. The paper discusses how to reduce the scale of the numerical problem to a subset of Fourier modes for a magnetic field in each representation, which then may be solved independently to obtain distinct branches of eigenvalues and magnetic field eigenfunctions. Two numerical methods are employed: the first is to time step a magnetic field in a given symmetry class and obtain the growth rate and frequency by measuring the magnetic energy as a function of time. The second method involves a more direct determination of the eigenvalue using the eigenvalue solver ARPACK for sparse matrix systems, which employs an implicitly restarted Arnoldi method. The two methods are checked against each other, and compared for efficiency and reliability. Eigenvalue branches for each symmetry class are obtained for magnetic Reynolds numbers Rm up to 104 together with spectra and magnetic field visualisations. A sequence of branches emerges as Rm increases and the magnetic field structures in the different branches are discussed and compared. In a parallel development,results are presented for the corresponding fluid stability problem as a function of the Reynolds number Re.en_GB
dc.description.sponsorshipLeverhulme Trusten_GB
dc.identifier.citationVol. 108, Issue 1, pp. 83 - 116en_GB
dc.identifier.urihttp://hdl.handle.net/10871/18805
dc.language.isoenen_GB
dc.publisherTaylor & Francisen_GB
dc.relation.urlhttps://doi.org/10.1080/03091929.2013.832762en_GB
dc.rights© 2013 Taylor & Francisen_GB
dc.subjectKinematic dynamoen_GB
dc.subjectABC flowen_GB
dc.subjectSymmetriesen_GB
dc.subjectFast dynamoen_GB
dc.subjectArnoldi methoden_GB
dc.titleDynamo action in the ABC flows using symmetriesen_GB
dc.typeArticleen_GB
dc.date.available2015-11-27T11:57:01Z
dc.identifier.issn0309-1929
dc.descriptionThis is an Accepted Manuscript of an article published by Taylor & Francis in Geophysical and Astrophysical Fluid Dynamics, Volume 108, Issue 1, 2014 available online 25 Sep 2013: http://wwww.tandfonline.com/10.1080/03091929.2013.832762.en_GB
dc.identifier.journalGeophysical and Astrophysical Fluid Dynamicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record