Show simple item record

dc.contributor.authorManzini, E
dc.contributor.authorKarpechko, AY
dc.contributor.authorAnstey, J
dc.contributor.authorBaldwin, MP
dc.contributor.authorBlack, RX
dc.contributor.authorCagnazzo, C
dc.contributor.authorCalvo, N
dc.contributor.authorCharlton-Perez, A
dc.contributor.authorChristiansen, B
dc.contributor.authorDavini, P
dc.contributor.authorGerber, E
dc.contributor.authorGiorgetta, M
dc.contributor.authorGray, L
dc.contributor.authorHardiman, SC
dc.contributor.authorLee, YY
dc.contributor.authorMarsh, DR
dc.contributor.authorMcDaniel, BA
dc.contributor.authorPurich, A
dc.contributor.authorScaife, AA
dc.contributor.authorShindell, D
dc.contributor.authorSon, SW
dc.contributor.authorWatanabe, S
dc.contributor.authorZappa, G
dc.date.accessioned2016-02-09T16:37:31Z
dc.date.issued2014-07-16
dc.description.abstractFuture changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a signi fi cant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.en_GB
dc.identifier.citationVol. 119, pp. 7979 - 7998en_GB
dc.identifier.doi10.1002/2013JD021403
dc.identifier.urihttp://hdl.handle.net/10871/19673
dc.language.isoenen_GB
dc.publisherAmerican Geophysical Union/Wileyen_GB
dc.rights©2014. American Geophysical Union. All Rights Reserved.en_GB
dc.titleNorthern winter climate change: assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere couplingen_GB
dc.typeArticleen_GB
dc.date.available2016-02-09T16:37:31Z
dc.identifier.issn2169-897X
dc.descriptionJournal Articleen_GB
dc.descriptionPublished versionen_GB
dc.identifier.eissn2169-8996
dc.identifier.journalJournal of Geophysical Research: Atmospheresen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record