dc.contributor.author | Petkov, George | |
dc.contributor.author | Goodfellow, Marc | |
dc.contributor.author | Richardson, Mark P. | |
dc.contributor.author | Terry, John R. | |
dc.date.accessioned | 2016-02-15T16:32:05Z | |
dc.date.issued | 2014-12-08 | |
dc.description.abstract | Recent clinical work has implicated network structure as critically important in the initiation of seizures in people with idiopathic generalized epilepsies. In line with this idea, functional networks derived from the electroencephalogram (EEG) at rest have been shown to be significantly different in people with generalized epilepsy compared to controls. In particular, the mean node degree of networks from the epilepsy cohort was found to be statistically significantly higher than those of controls. However, the mechanisms by which these network differences can support recurrent transitions into seizures remain unclear. In this study, we use a computational model of the transition into seizure dynamics to explore the dynamic consequences of these differences in functional networks. We demonstrate that networks with higher mean node degree are more prone to generating seizure dynamics in the model and therefore suggest a mechanism by which increased mean node degree of brain networks can cause heightened ictogenicity. | en_GB |
dc.description.sponsorship | Medical Research Council (MRC) | en_GB |
dc.identifier.citation | Vol. 5, article 261 | en_GB |
dc.identifier.doi | 10.3389/fneur.2014.00261 | |
dc.identifier.grantnumber | MR/K013998/01 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/19875 | |
dc.language.iso | en | en_GB |
dc.publisher | Frontiers Media | en_GB |
dc.relation.url | http://www.ncbi.nlm.nih.gov/pubmed/25538679 | en_GB |
dc.rights | Copyright: © 2014 Petkov, Goodfellow, Richardson and Terry. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. | en_GB |
dc.subject | EEG | en_GB |
dc.subject | dynamical systems | en_GB |
dc.subject | epilepsy | en_GB |
dc.subject | graph theory | en_GB |
dc.subject | network dynamics | en_GB |
dc.title | A critical role for network structure in seizure onset: a computational modeling approach | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2016-02-15T16:32:05Z | |
exeter.place-of-publication | Switzerland | |
dc.identifier.eissn | 1664-2295 | |
dc.identifier.journal | Frontiers in Neurology | en_GB |