Show simple item record

dc.contributor.authorAndrade, JC
dc.contributor.authorKeating, JP
dc.date.accessioned2016-02-24T13:46:02Z
dc.date.issued2013-12-30
dc.description.abstractThe first and second moments are established for the family of quadratic Dirichlet L-functions over the rational function field at the central point s=1/2, where the character χ is defined by the Legendre symbol for polynomials over finite fields and runs over all monic irreducible polynomials P of a given odd degree. Asymptotic formulae are derived for fixed finite fields when the degree of P is large. The first moment obtained here is the function field analogue of a result due to Jutila in the number field setting. The approach is based on classical analytical methods and relies on the use of the analogue of the approximate functional equation for these L-functions.en_GB
dc.description.sponsorshipNational Science Foundation (NSF)en_GB
dc.description.sponsorshipLeverhulme Trusten_GB
dc.description.sponsorshipAir Force Office of Scientific Research (USAF)en_GB
dc.identifier.citationVol. 161, pp. 371 - 385en_GB
dc.identifier.doi10.4064/aa161-4-4
dc.identifier.grantnumberFA8655- 10-1-3088en_GB
dc.identifier.urihttp://hdl.handle.net/10871/20101
dc.language.isoenen_GB
dc.publisherPolskiej Akademii Nauk, Instytut Matematyczny (Polish Academy of Sciences, Institute of Mathematics)en_GB
dc.rights© Instytut Matematyczny PAN, 2013en_GB
dc.titleMean value theorems for L-functions over prime polynomials for the rational function fielden_GB
dc.typeArticleen_GB
dc.date.available2016-02-24T13:46:02Z
dc.identifier.issn0065-1036
dc.descriptionAuthor's manuscript. The published version is available via: DOI: 10.4064/aa161-4-4en_GB
dc.identifier.journalActa Arithmeticaen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record