Show simple item record

dc.contributor.authorTerhesiu, Dalia
dc.date.accessioned2016-02-24T16:25:10Z
dc.date.issued2015-12-30
dc.description.abstractWe obtain higher order theory for the long term behavior of the transfer operator associated with the unit interval map (Formula presented.) if (Formula presented.), (Formula presented.) if (Formula presented.) for the whole range (Formula presented.), which corresponds to the infinite measure preserving case. Higher order theory for (Formula presented.) is more challenging and requires new techniques. Along the way, we provide higher order theory for scalar and operator renewal sequences with infinite measure and regular variation. Although the present work considers the unit interval map mentioned above as a toy model, our interest focuses on finding sufficient conditions under which the asymptotic behavior of the transfer operator associated to dynamical systems preserving an infinite measure is ’almost like’ the asymptotic behavior of scalar renewal sequences associated to null recurrent Markov chains characterized by regular variation.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipEuropean Research Council (ERC)en_GB
dc.identifier.citationpp. 1 - 36: DOI 10.1007/s00440-015-0690-0en_GB
dc.identifier.doi10.1007/s00440-015-0690-0
dc.identifier.grantnumberEP/F031807/1en_GB
dc.identifier.grantnumberAdG 246953.en_GB
dc.identifier.urihttp://hdl.handle.net/10871/20104
dc.language.isoenen_GB
dc.publisherSpringer Verlag (Germanyen_GB
dc.rights.embargoreasonPublisher Policyen_GB
dc.subject37A25en_GB
dc.subject37A40en_GB
dc.subject37A50en_GB
dc.subject37D25en_GB
dc.titleMixing rates for intermittent maps of high exponenten_GB
dc.typeArticleen_GB
dc.identifier.issn0178-8051
dc.descriptionAuthor's manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s00440-015-0690-0en_GB
dc.identifier.journalProbability Theory and Related Fieldsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record