Show simple item record

dc.contributor.authorWang, Y
dc.contributor.authorGoodfellow, Marc
dc.contributor.authorTaylor, PN
dc.contributor.authorBaier, G
dc.date.accessioned2016-02-26T13:12:31Z
dc.date.issued2014-08-14
dc.description.abstractRecent experimental and clinical studies have provided diverse insight into the mechanisms of human focal seizure initiation and propagation. Often these findings exist at different scales of observation, and are not reconciled into a common understanding. Here we develop a new, multiscale mathematical model of cortical electric activity with realistic mesoscopic connectivity. Relating the model dynamics to experimental and clinical findings leads us to propose three classes of dynamical mechanisms for the onset of focal seizures in a unified framework. These three classes are: (i) globally induced focal seizures; (ii) globally supported focal seizures; (iii) locally induced focal seizures. Using model simulations we illustrate these onset mechanisms and show how the three classes can be distinguished. Specifically, we find that although all focal seizures typically appear to arise from localised tissue, the mechanisms of onset could be due to either localised processes or processes on a larger spatial scale. We conclude that although focal seizures might have different patient-specific aetiologies and electrographic signatures, our model suggests that dynamically they can still be classified in a clinically useful way. Additionally, this novel classification according to the dynamical mechanisms is able to resolve some of the previously conflicting experimental and clinical findings.en_GB
dc.description.sponsorshipThis work was supported by the Doctoral Training Centre in Systems Biology (University of Manchester), the Biotechnology and Biological Sciences Research Council, and the Engineering and Physical Sciences Research Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.en_GB
dc.identifier.citationVol. 10, Iss. 8 pp. e1003787en_GB
dc.identifier.doi10.1371/journal.pcbi.1003787
dc.identifier.otherPCOMPBIOL-D-13-01706
dc.identifier.urihttp://hdl.handle.net/10871/20162
dc.language.isoenen_GB
dc.publisherPublic Library of Scienceen_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/25122455en_GB
dc.relation.urlhttp://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003787en_GB
dc.rightsThis is the final version of the article. It first appeared from Public Library of Science via http://dx.doi.org/10.1371/journal.pcbi.1003787.en_GB
dc.subjectCerebral Cortexen_GB
dc.subjectComputational Biologyen_GB
dc.subjectComputer Simulationen_GB
dc.subjectEpilepsyen_GB
dc.subjectHumansen_GB
dc.subjectModels, Neurologicalen_GB
dc.subjectSeizuresen_GB
dc.titleDynamic mechanisms of neocortical focal seizure onset.en_GB
dc.typeArticleen_GB
dc.date.available2016-02-26T13:12:31Z
dc.identifier.issn1553-734X
exeter.place-of-publicationUnited States
dc.descriptionPublished onlineen_GB
dc.descriptionJournal Articleen_GB
dc.descriptionResearch Support, Non-U.S. Gov'ten_GB
dc.identifier.eissn1553-7358
dc.identifier.journalPLoS Computational Biologyen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record