Enhanced regime predictability in atmospheric low-order models due to stochastic forcing.
Kwasniok, F
Date: 28 June 2014
Article
Journal
Philosophical Transactions A: Mathematical, Physical and Engineering Sciences
Publisher
Royal Society, The
Publisher DOI
Related links
Abstract
Regime predictability in atmospheric low-order models augmented with stochastic forcing is studied. Atmospheric regimes are identified as persistent or metastable states using a hidden Markov model analysis. A somewhat counterintuitive, coherence resonance-like effect is observed: regime predictability increases with increasing noise ...
Regime predictability in atmospheric low-order models augmented with stochastic forcing is studied. Atmospheric regimes are identified as persistent or metastable states using a hidden Markov model analysis. A somewhat counterintuitive, coherence resonance-like effect is observed: regime predictability increases with increasing noise level up to an intermediate optimal value, before decreasing when further increasing the noise level. The enhanced regime predictability is due to increased persistence of the regimes. The effect is found in the Lorenz '63 model and a low-order model of barotropic flow over topography. The increased predictability is only present in the regime dynamics, that is, in a coarse-grained view of the system; predictability of individual trajectories decreases monotonically with increasing noise level. A possible explanation for the phenomenon is given and implications of the finding for weather and climate modelling and prediction are discussed.
Mathematics and Statistics
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0