Show simple item record

dc.contributor.authorPotyrailo, RA
dc.contributor.authorBonam, RK
dc.contributor.authorHartley, JG
dc.contributor.authorStarkey, TA
dc.contributor.authorVukusic, P
dc.contributor.authorVasudev, M
dc.contributor.authorBunning, T
dc.contributor.authorNaik, RR
dc.contributor.authorTang, Z
dc.contributor.authorPalacios, MA
dc.contributor.authorLarsen, M
dc.contributor.authorLe Tarte, LA
dc.contributor.authorGrande, JC
dc.contributor.authorZhong, S
dc.contributor.authorDeng, T
dc.date.accessioned2016-03-07T15:17:02Z
dc.date.issued2015-09-01
dc.description.abstractCombining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring.en_GB
dc.description.sponsorshipWe would like to acknowledge H. Ghiradella (University at Albany), M. Blohm and S. Duclos (GE) and V. Greanya, J. Abo-Shaeer, C. Nehl and M. Sandrock (DARPA) for fruitful discussions. This work has been supported in part from DARPA contract W911NF-10-C-0069 ‘Bio Inspired Photonics’ and from General Electric’s Advanced Technology research funds. The content of the information does not necessarily reflect the position or the policy of the US Government.en_GB
dc.identifier.citationVol. 6, pp. 7959 -en_GB
dc.identifier.doi10.1038/ncomms8959
dc.identifier.otherncomms8959
dc.identifier.urihttp://hdl.handle.net/10871/20572
dc.language.isoenen_GB
dc.publisherNature Publishing Group: Nature Communicationsen_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/26324320en_GB
dc.relation.urlhttp://www.nature.com/ncomms/2015/150901/ncomms8959/full/ncomms8959.htmlen_GB
dc.rightsThis is the final version of the article. Available from Nature Publishing Group via the DOI in this record.en_GB
dc.subjectPhysical sciencesen_GB
dc.subjectMaterials scienceen_GB
dc.subjectNanotechnologyen_GB
dc.titleTowards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies.en_GB
dc.typeArticleen_GB
dc.date.available2016-03-07T15:17:02Z
exeter.place-of-publicationEngland
dc.descriptionPublished onlineen_GB
dc.descriptionJournal Articleen_GB
dc.descriptionResearch Support, Non-U.S. Gov'ten_GB
dc.descriptionResearch Support, U.S. Gov't, Non-P.H.S.en_GB
dc.identifier.eissn2041-1723
dc.identifier.journalNature Communicationsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record