Show simple item record

dc.contributor.authorBrito, J
dc.contributor.authorRizzo, LV
dc.contributor.authorMorgan, WT
dc.contributor.authorCoe, H
dc.contributor.authorJohnson, B
dc.contributor.authorHaywood, J
dc.contributor.authorLongo, K
dc.contributor.authorFreitas, S
dc.contributor.authorAndreae, MO
dc.contributor.authorArtaxo, P
dc.date.accessioned2016-04-11T10:33:55Z
dc.date.issued2014-11-18
dc.description.abstractThis paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ∼ 1000 cm−3 to peaks of up to 35 000 cm−3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 µg m−3 and peak concentrations close to 100 µg m−3 . Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 µg m−3 . The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 µg m−3 , respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 µg m−3 , with an average concentration of 1.3 µg m−3 . During BB peaks, organics accounted for over 90 % of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ∼= 0.25 to O : C ∼= 0.6), no remarkable change is observed in the H : C ratio (∼ 1.35). Such a result contrasts strongly with previous observations of chemical ageing of both urban and Amazonian biogenic aerosols. At higher levels of processing (O : C > 0.6), the H : C ratio changes with a H : C/O : C slope of −0.5, possibly due to the development of a combination of BB (H : C/O : C slope = 0) and biogenic (H : C/O : C slope = −1) organic aerosol (OA). An analysis of the 1OA/1CO mass ratios yields very little enhancement in the OA loading with atmospheric processing, consistent with previous observations. These results indicate that negligible secondary organic aerosol (SOA) formation occurs throughout the observed BB plume Published by Copernicus Publications on behalf of the European Geosciences Union. 12070 J. Brito et al.: Ground-based aerosol characterization during SAMBBA processing, or that SOA formation is almost entirely balanced by OA volatilization. Positive matrix factorization (PMF) of the organic aerosol spectra resulted in three factors: fresh BBOA, aged BBOA, and low-volatility oxygenated organic aerosol (LV-OOA). Analysis of the diurnal patterns and correlation with external markers indicates that during the first part of the campaign, OA concentrations are impacted by local fire plumes with some chemical processing occurring in the near-surface layer. During the second part of the campaign, long-range transport of BB plumes above the surface layer, as well as potential SOAs formed aloft, dominates OA concentrations at our ground-based sampling site. This manuscript describes the first ground-based deployment of the aerosol mass spectrometry at a site heavily impacted by biomass burning in the Amazon region, allowing a deeper understanding of aerosol life cycle in this important ecosystem.en_GB
dc.description.sponsorshipThis work was supported by the Foundation for Research Support of the State of São Paulo (FAPESP, projects 2012/14437-9 and 2013/05014-0), CNPq project 475735- 2012-9, INCT Amazonia, and Natural Environment Research Council (NERC) project NE/J010073/1. We thank A. Ribeiro, A. L. Loureiro, F. Morais, F. Jorge, and S. Morais for technical and logistics support. We thank the National Institute of Meteorology for providing valuable meteorological data. We gratefully acknowledge S. Hacon, J. Silva, and W. Bastos for support in the successful operation of the sampling site.en_GB
dc.identifier.citationAtmospheric Chemistry and Physics, 2014, Vol. 14, pp. 12069 - 12083en_GB
dc.identifier.doi10.5194/acp-14-12069-2014
dc.identifier.urihttp://hdl.handle.net/10871/21043
dc.language.isoenen_GB
dc.publisherEuropean Geosciences Unionen_GB
dc.rightsThis is the final version of the article. Available from the European Geosciences Union via the DOI in this record.en_GB
dc.titleGround-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experimenten_GB
dc.typeArticleen_GB
dc.date.available2016-04-11T10:33:55Z
dc.identifier.issn1680-7316
dc.identifier.journalAtmospheric Chemistry and Physicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record