Show simple item record

dc.contributor.authorHawcroft, MK
dc.contributor.authorDacre, HF
dc.contributor.authorForbes, RM
dc.contributor.authorHodges, KI
dc.contributor.authorShaffrey, LC
dc.contributor.authorStein, THM
dc.date.accessioned2016-04-06T08:21:06Z
dc.date.accessioned2016-05-25T09:07:42Z
dc.date.issued2016-06-24
dc.description.abstractExtratropical cyclones are a key feature of the weather in the extra-tropics, which climate models need to represent in order to provide reliable projections of future climate. Extratropical cyclones produce significant precipitation and the associated latent heat release can play a major role in their development. This study evaluates the ability of a climate model, HiGEM, to represent latent heating in extratropical cyclones. Remote sensing data is used to investigate the ability of both the climate model and ERA-Interim (ERAI) reanalysis to represent extratropical cyclone cloud features before latent heating itself is assessed. An offline radiance simulator, COSP, and the ISCCP and CloudSat datasets are used to evaluate comparable fields from HiGEM and ERAI. HiGEM is found to exhibit biases in the cloud structure of extratropical cyclones, with too much high cloud produced in the warm conveyor belt region compared to ISCCP. Significant latent heating occurs in this region, derived primarily from HiGEM’s convection scheme. ERAI is also found to exhibit biases in cloud structure, with more clouds at lower altitudes than those observed in ISCCP in the warm conveyor belt region. As a result, latent heat release in ERAI is concentrated at lower altitudes. CloudSat indicates that much precipitation may be produced at too low an altitude in both HiGEM and ERAI, particularly ERAI, and neither capture observed variability in precipitation intensity. The potential vorticity structure in composite extratropical cyclones in HiGEM and ERAI is also compared. A more pronounced tropopause ridge evolves in HiGEM on the leading edge of the composite as compared to ERAI. One future area of research to be addressed is what impact these biases in the representation of latent heating have on climate projections produced by HiGEM. The biases found in ERAI indicate caution is required when using reanalyses to study cloud features and precipitation processes in extratropical cyclones or using reanalysis to evaluate climate models’ ability to represent their structure.en_GB
dc.description.sponsorshipMKH was supported by the Natural Environment Research Council’s project ’Testing and Evaluating Model Predictions of European Storms’ (TEMPEST) during this work.en_GB
dc.identifier.citationFirst Online: 24 June 2016en_GB
dc.identifier.doi10.1007/s00382-016-3204-6
dc.identifier.urihttp://hdl.handle.net/10871/21685
dc.language.isoenen_GB
dc.publisherSpringer Verlagen_GB
dc.relation.urlhttp://link.springer.com/article/10.1007/s00382-016-3204-6
dc.rightsThis is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.
dc.subjectDiabatic processesen_GB
dc.subjectLatent heatingen_GB
dc.subjectExtratropical cyclonesen_GB
dc.subjectclimate modelsen_GB
dc.subjectReanalysisen_GB
dc.subjectRemote sensing dataen_GB
dc.titleUsing satellite data and reanalysis to evaluate the representation of diabatic processes in extratropical cyclones in a climate modelen_GB
dc.typeArticleen_GB
dc.identifier.issn0930-7575
dc.descriptionThis is an open access article.
dc.identifier.eissn1432-0894
dc.identifier.journalClimate Dynamics: observational, theoretical and computational research on the climate systemen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record