Show simple item record

dc.contributor.authorWhite, GJ
dc.contributor.authorDrabek-Maunder, E
dc.contributor.authorRosolowsky, E
dc.contributor.authorWard-Thompson, D
dc.contributor.authorDavis, J
dc.contributor.authorGregson, J
dc.contributor.authorHatchell, J
dc.contributor.authorEtxaluze, M
dc.contributor.authorStickler, S
dc.contributor.authorBuckle, J
dc.contributor.authorJohnstone, D
dc.contributor.authorFriesen, R
dc.contributor.authorSadavoy, S
dc.contributor.authorNatt, KV
dc.contributor.authorCurrie, M
dc.contributor.authorRicher, JS
dc.contributor.authorPattle, K
dc.contributor.authorSpaans, M
dc.contributor.authorDi Francesco, J
dc.contributor.authorHogerheijde, MR
dc.date.accessioned2016-06-08T15:39:06Z
dc.date.issued2014-01-01
dc.description.abstractCO, 13CO, and C18O J = 3-2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 × 1039 J (2282 M⊙ km2 s-2). The turbulent kinetic energy is 6.3 × 1038 J (320 M⊙ km2 s-2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 × 1038 J (67 M⊙ km2 s-2), corresponding to 21 per cent of the cloud's turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii~0.01-0.05 pc, virial masses~0.1-12M⊙, luminosities~0.001-0.1K km s-1 pc-2, and excitation temperatures ~10-50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size-linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.en_GB
dc.description.sponsorshipWe thank Alain Abergel for sharing his archival ISOCAM data at an early stage of writing this paper. The JCMT is operated by the Joint Astronomy Centre, Hawaii, on behalf of the UK STFC, the Netherlands NWO and the Canadian NRC. We gratefully acknowledge the support of the JCMT staff and operatorsen_GB
dc.identifier.citationVol. 447: 1996-2020en_GB
dc.identifier.doi10.1093/mnras/stu2323
dc.identifier.urihttp://hdl.handle.net/10871/21936
dc.language.isoenen_GB
dc.publisherOxford University Press (OUP) on behalf of the Royal Astronomical Societyen_GB
dc.subjectmolecular dataen_GB
dc.subjectstars formationen_GB
dc.subjectISMen_GB
dc.subjectjetsen_GB
dc.subjectoutflowsen_GB
dc.subjectkinematicsen_GB
dc.subjectdynamicsen_GB
dc.subjectsubmillimetreen_GB
dc.titleThe James Clerk Maxwell telescope Legacy Survey of the Gould Belt: A molecular line study of the Ophiuchus molecular clouden_GB
dc.typeArticleen_GB
dc.date.available2016-06-08T15:39:06Z
dc.identifier.issn0035-8711
dc.descriptionThis is the final version of the article. Available from the publisher via the DOI in this record.en_GB
dc.identifier.journalMonthly Notices of the Royal Astronomical Societyen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record