Show simple item record

dc.contributor.authorHorsley, SAR
dc.contributor.authorBugler-Lamb, S
dc.date.accessioned2016-07-07T11:09:54Z
dc.date.issued2016-06-14
dc.description.abstractA change in the sign of the frequency of a wave between two inertial reference frames corresponds to a reversal of the phase velocity. Yet from the point of view of the relation E=ω, a positive quantum of energy apparently becomes a negative-energy one. This is physically distinct from a change in the sign of the wave vector and can be associated with various effects such as Cherenkov radiation, quantum friction, and the Hawking effect. In this work we provide a more detailed understanding of these negative-frequency modes based on a simple microscopic model of a dielectric medium as a lattice of scatterers. We calculate the classical and quantum mechanical radiation damping of an oscillator moving through such a lattice and find that the modes where the frequency has changed sign contribute negatively. In terms of the lattice of scatterers we find that this negative radiation damping arises due to the phase of the periodic force experienced by the oscillator due to the relative motion of the lattice.en_GB
dc.description.sponsorshipEPSRC programme grant EP/1034548/1.en_GB
dc.identifier.citationVol. 93, Iss. 6, Art. No. 063828en_GB
dc.identifier.doi10.1103/PhysRevA.93.063828
dc.identifier.urihttp://hdl.handle.net/10871/22437
dc.language.isoenen_GB
dc.publisherAmerican Physical Societyen_GB
dc.rightsThis is the author accepted manuscript. The final version is available from American Physical Society via the DOI in this record.en_GB
dc.titleNegative frequencies in wave propagation: A microscopic modelen_GB
dc.typeArticleen_GB
dc.date.available2016-07-07T11:09:54Z
dc.identifier.issn1050-2947
dc.identifier.eissn1094-1622
dc.identifier.journalPhysical Review A - Atomic, Molecular, and Optical Physicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record