Show simple item record

dc.contributor.authorWeigelt, G
dc.contributor.authorHofmann, K-H
dc.contributor.authorSchertl, D
dc.contributor.authorClementel, N
dc.contributor.authorCorcoran, MF
dc.contributor.authorDamineli, A
dc.contributor.authorde Wit, W-J
dc.contributor.authorGrellmann, R
dc.contributor.authorGroh, J
dc.contributor.authorGuieu, S
dc.contributor.authorGull, T
dc.contributor.authorHeininger, M
dc.contributor.authorHillier, DJ
dc.contributor.authorHummel, CA
dc.contributor.authorKraus, S
dc.contributor.authorMadura, T
dc.contributor.authorMehner, A
dc.contributor.authorMérand, A
dc.contributor.authorMillour, F
dc.contributor.authorMoffat, AFJ
dc.contributor.authorOhnaka, K
dc.contributor.authorPatru, F
dc.contributor.authorPetrov, RG
dc.contributor.authorRengaswamy, S
dc.contributor.authorRichardson, ND
dc.contributor.authorRivinius, T
dc.contributor.authorSchöller, M
dc.contributor.authorTeodoro, M
dc.contributor.authorWittkowski, M
dc.date.accessioned2017-02-13T15:47:26Z
dc.date.issued2016-10
dc.description.abstractContext. The mass loss from massive stars is not understood well. η Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of η Car’s primary star wind and wind-wind collision zone with a high spatial resolution of ~6 mas (~14 au) and high spectral resolution of R = 12 000. Methods. Observations of η Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 different spectral channels distributed across the Brγ 2.166 μm emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately −140 to − 376 km s-1 measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of − 277 km s-1, the position angle of the symmetry axis of the fan is ~126°. The fan-shaped structure extends approximately 8.0 mas (~18.8 au) to the southeast and 5.8 mas (~13.6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three-dimensional hydrodynamical, radiative transfer models of the massive interacting winds of η Car.en_GB
dc.description.sponsorshipn. The telluric spectra used in this work for spectral calibration of the AMBER data were created from data that was kindly made available by the NSO/Kitt Peak Observatory. This publication makes use of the SIMBAD database operated at CDS, Strasbourg, France. We thank the referee for helpful suggestions. A.F.J.M. is grateful for financial aid from NSERC (Canada) and FQRNT (Quebec). S.K. acknowledges support from an STFC Rutherford Fellowship (ST/J004030/1) and ERC Starting Grant (Grant Agreement No. 639889).en_GB
dc.identifier.citationVol. 594, A106en_GB
dc.identifier.doi10.1051/0004-6361/201628832
dc.identifier.urihttp://hdl.handle.net/10871/25807
dc.language.isoenen_GB
dc.publisherEDP Sciencesen_GB
dc.rights© ESO 2016en_GB
dc.subjectstarsen_GB
dc.subjectwindsen_GB
dc.subjectoutflowsen_GB
dc.subjectη Carinaeen_GB
dc.subjectmass-lossen_GB
dc.subjectinterferometricen_GB
dc.titleVLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12 000. Studies of the primary star wind and innermost wind-wind collision zoneen_GB
dc.typeArticleen_GB
dc.date.available2017-02-13T15:47:26Z
dc.identifier.issn0004-6361
dc.descriptionThis is the final version of the article. Available from the publisher via the DOI in this record.en_GB
dc.identifier.journalAstronomy and Astrophysicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record