Show simple item record

dc.contributor.authorBetterton, RT
dc.contributor.authorBroad, LM
dc.contributor.authorTsaneva-Atanasova, K
dc.contributor.authorMellor, JR
dc.date.accessioned2017-04-24T08:18:21Z
dc.date.issued2017-03-12
dc.description.abstractModulation of gamma oscillations is important for the processing of information and the disruption of gamma oscillations is a prominent feature of schizophrenia and Alzheimer’s disease. Gamma oscillations are generated by the interaction of excitatory and inhibitory neurons where their precise frequency and amplitude are controlled by the balance of Accepted Article This article is protected by copyright. All rights reserved. excitation and inhibition. Acetylcholine enhances the intrinsic excitability of pyramidal neurons and supresses both excitatory and inhibitory synaptic transmission but the net modulatory effect on gamma oscillations is not known. Here, we find that the power, but not frequency, of optogenetically -induced gamma oscillations in the CA3 region of mouse hippocampal slices is enhanced by low concentrations of the broad spectrum cholinergic agonist carbachol but reduced at higher concentrations. This bidirectional modulation of gamma oscillations is replicated within a mathematical model by neuronal depolarization, but not by reducing synaptic conductances, mimicking the effects of muscarinic M1 receptor activation. The predicted role for M1 receptors was supported experimentally; bidirectional modulation of gamma oscillations by acetylcholine was replicated by a selective M1 receptor agonist and prevented by genetic deletion of M1 receptors. These results reveal that acetylcholine release in CA3 of the hippocampus modulates gamma oscillation power but not frequency in a bidirectional and dose -dependent manner by acting primarily through muscarinic M1 receptorsen_GB
dc.description.sponsorshipThis work was supported by the Wellcome Trust Neural Dynamics PhD programme (RTB) and the Wellcome Trust (JRM). We thank Eli Lilly and Co. for gifts of GSK -5 and M1 receptor knockout mice. We thank members of the Mellor lab for helpful discussions and J. Brown for comments on previous versions of the manuscript. The authors declare no competing financial interests.en_GB
dc.identifier.citationDOI: 10.1111/ejn.13582en_GB
dc.identifier.doi10.1111/ejn.13582
dc.identifier.urihttp://hdl.handle.net/10871/27215
dc.language.isoenen_GB
dc.publisherWileyen_GB
dc.relation.urlhttp://dx.doi.org/10.1111/ejn.13582en_GB
dc.rights.embargoreasonPublisher policyen_GB
dc.subjectacetylcholineen_GB
dc.subjectgamma oscillationsen_GB
dc.subjecthippocampusen_GB
dc.subjectmuscarinic M1 receptorsen_GB
dc.titleAcetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptorsen_GB
dc.typeArticleen_GB
dc.identifier.issn1460-9568
dc.descriptionThis is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.en_GB
dc.descriptionThis article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/ejn.13582 This article is protected by copyright. All rights reserved.en_GB
dc.identifier.journalEuropean Journal of Neuroscienceen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record