Show simple item record

dc.contributor.authorBaker, SJ
dc.contributor.authorHesselbo, SP
dc.contributor.authorLenton, TM
dc.contributor.authorDuarte, LV
dc.contributor.authorBelcher, CM
dc.date.accessioned2017-05-12T12:30:19Z
dc.date.issued2017-05-12
dc.description.abstractThe Toarcian Oceanic Anoxic Event (T-OAE) was characterized by a major disturbance to the global carbon(C)-cycle, and depleted oxygen in Earth’s oceans resulting in marine mass extinction. Numerical models predict that increased organic carbon burial should drive a rise in atmospheric oxygen (pO2) leading to termination of an OAE after ∼1 Myr. Wildfire is highly responsive to changes in pO2 implying that fire-activity should vary across OAEs. Here we test this hypothesis by tracing variations in the abundance of fossil charcoal across the T-OAE. We report a sustained ∼800 kyr enhancement of fire-activity beginning ∼1 Myr after the onset of the T-OAE and peaking during its termination. This major enhancement of fire occurred across the timescale of predicted pO2 variations, and we argue this was primarily driven by increased pO2. Our study provides the first fossil-based evidence suggesting that fire-feedbacks to rising pO2 may have aided in terminating the T-OAE.en_GB
dc.description.sponsorshipWe thank the Natural Environment Research Council for funding through a studentship grant NE/L501669/1 to S.J.B. C.M.B. acknowledges funding via an ERC Starter Grant ERC-2013-StG-335891-ECOFLAM. S.P.H., T.M.L. and C.M.B. acknowledge funding from the NERC ‘JET’ grant NE/N018508/1, as well as a Royal Society Wolfson Research Merit Award supporting T.M.L.en_GB
dc.identifier.doi10.1038/ncomms15018
dc.identifier.urihttp://hdl.handle.net/10871/27501
dc.language.isoenen_GB
dc.publisherNature Publishing Groupen_GB
dc.rightsOpen access. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en_GB
dc.titleCharcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxiaen_GB
dc.typeArticleen_GB
dc.date.available2017-05-12T12:30:19Z
dc.identifier.issn2041-1723
dc.descriptionThis is the final version of the article. Available from Springer Nature via the DOI in this record.en_GB
dc.identifier.journalNature Communicationsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record