Show simple item record

dc.contributor.authorFerrett, SJ
dc.contributor.authorCollins, M
dc.contributor.authorRen, H-L
dc.date.accessioned2017-05-31T13:14:52Z
dc.date.issued2017-07-18
dc.description.abstractThis study examines the extent of the Pacific double intertropical convergence zone (ITCZ) bias in an ensemble of CMIP5 coupled general circulation models and the relationship between this common bias and equatorial Pacific evaporative heat flux feedbacks involved in the El Niño Southern Oscillation (ENSO). A feedback decomposition method, based on the latent heat flux bulk formula, is implemented to enable identification of underlying causes of feedback bias and diversity from dynamical and thermodynamical processes. The magnitude of mean precipitation south of the equator in the east Pacific (an indicator of the extent of the double ITCZ bias in a model) is linked to the mean meridional surface wind speed and direction in the region and is consequently linked to diversity in the strength of the wind speed response during the ENSO cycle. The ENSO latent heat flux damping is weak in almost all models and shows a relatively large range in strength in the CMIP5 ensemble. While both humidity gradient and wind speed feedbacks are important drivers of the damping, the wind speed feedback is an underlying cause of the overall damping bias for many models and is ultimately more dominant in driving inter-ensemble variation. Feedback biases can also persist in atmosphere only (AMIP) runs, suggesting the atmosphere model plays an important role in latent heat flux damping and double ITCZ bias and variation. Improvements to coupled model simulation of both mean precipitation and ENSO may be accelerated by focussing on the atmosphere component.en_GB
dc.description.sponsorshipThis work was supported by the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund. MC acknowledges additional support from the Natural Environment Research Council grant number NE/N018486/1. H-L Ren is supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY201506013) and the Project for Development of Key Techniques in Meteorological Forecasting Operation (YBGJXM201705).
dc.identifier.citationVol. 30, pp. 6351-6370en_GB
dc.identifier.doi10.1175/JCLI-D-16-0748.1
dc.identifier.urihttp://hdl.handle.net/10871/27746
dc.language.isoenen_GB
dc.publisherAmerican Meteorological Societyen_GB
dc.rights.embargoreasonPublisher policyen_GB
dc.titleUnderstanding bias in the Evaporative Damping of El Niño Southern Oscillation Events in CMIP5 modelsen_GB
dc.typeArticleen_GB
dc.identifier.issn0894-8755
dc.descriptionThis is the final version of the article. Available from the American Meteorological Society via the DOI in this record.
dc.identifier.journalJournal of Climateen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record