Show simple item record

dc.contributor.authorSaidi, M
dc.contributor.authorTamagawa, A
dc.date.accessioned2017-08-25T14:38:17Z
dc.date.issued2018-03-29
dc.description.abstractIn this paper we prove a refined version of a theorem by Tamagawa and Mochizuki on isomorphisms between (tame) arithmetic fundamental groups of hyperbolic curves over finite fields, where one “ignores” the information provided by a “small” set of primes.en_GB
dc.identifier.citationFirst published in Journal of Algebraic Geometry (29 March 2018), published by the American Mathematical Society. © 2018 American Mathematical Society.en_GB
dc.identifier.doi10.1090/jag/708
dc.identifier.urihttp://hdl.handle.net/10871/29076
dc.publisherAmerican Mathematical Societyen_GB
dc.rights© 2018 American Mathematical Society.
dc.titleA refined version of Grothendieck's anabelian conjecture for hyperbolic curves over finite fieldsen_GB
dc.typeArticleen_GB
dc.identifier.issn1056-3911
dc.descriptionThis is the author accepted manuscript. The final version is available from the American Mathematical Society via the DOI in this record.en_GB
dc.identifier.eissn1534-7486
dc.identifier.journalJournal of Algebraic Geometryen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record