Show simple item record

dc.contributor.authorHughes, TH
dc.date.accessioned2017-09-14T13:14:10Z
dc.date.issued2017-09-09
dc.description.abstractWe present two linked theorems on passivity: the passive behavior theorem, parts 1 and 2. Part 1 provides necessary and sufficient conditions for a general linear system, described by a set of high order differential equations, to be passive. Part 2 extends the positive-real lemma to include uncontrollable and unobservable state-space systems.en_GB
dc.description.sponsorshipThis research was conducted in part during a Fellowship supported by the Cambridge Philosophical Society , http://www.cambridgephilosophicalsociety.org.en_GB
dc.identifier.citationVol. 86, pp. 87-97en_GB
dc.identifier.doi10.1016/j.automatica.2017.08.017
dc.identifier.urihttp://hdl.handle.net/10871/29341
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonPublisher policyen_GB
dc.rightsThis manuscript version is made available under the CC-BY-NC-ND 4.0 licenseen_GB
dc.subjectPassive systemen_GB
dc.subjectPositive-real lemmaen_GB
dc.subjectLinear systemen_GB
dc.subjectControllabilityen_GB
dc.subjectObservabilityen_GB
dc.subjectBehavioren_GB
dc.titleA theory of passive linear systems with no assumptionsen_GB
dc.typeArticleen_GB
dc.identifier.issn0005-1098
dc.descriptionThis is the author's accepted versionen_GB
dc.descriptionFinal version available from Elsevier via the DOI in this recorden_GB
dc.identifier.journalAutomaticaen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/


Files in this item

This item appears in the following Collection(s)

Show simple item record

This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Except where otherwise noted, this item's licence is described as This manuscript version is made available under the CC-BY-NC-ND 4.0 license