dc.contributor.author | Tseng, J | |
dc.date.accessioned | 2017-10-23T08:48:52Z | |
dc.date.issued | 2017-06 | |
dc.description.abstract | We show that, for pairs of hyperbolic toral automorphisms on the -torus, the points with dense forward orbits under one map and non-dense forward orbits under the other is a dense, uncountable set. The pair of maps can be non-commuting. We also show the same for pairs of -Anosov diffeomorphisms on the -torus. (The pairs must satisfy slight constraints.) Our main tools are the Baire category theorem and a geometric construction that allows us to give a geometric characterization of the fractal that is the set of points with forward orbits that miss a certain open set. | en_GB |
dc.identifier.citation | Vol. 37, Iss. 4, pp. 1308 - 1322 | en_GB |
dc.identifier.doi | 10.1017/etds.2015.80 | |
dc.identifier.uri | http://hdl.handle.net/10871/29966 | |
dc.language.iso | en | en_GB |
dc.publisher | Cambridge University Press | en_GB |
dc.rights | © Cambridge University Press, 2016 | en_GB |
dc.title | Simultaneous dense and non-dense orbits for toral diffeomorphisms | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2017-10-23T08:48:52Z | |
dc.identifier.issn | 0143-3857 | |
dc.description | This is the author accepted manuscript. The final version is available from Cambridge University Press via the DOI in this record. | en_GB |
dc.identifier.eissn | 1469-4417 | |
dc.identifier.journal | Ergodic Theory and Dynamical Systems | en_GB |