Show simple item record

dc.contributor.authorThuburn, J
dc.contributor.authorWeller, HG
dc.contributor.authorVallis, GK
dc.contributor.authorBeare, RJ
dc.contributor.authorWhitall, M
dc.date.accessioned2017-12-18T11:30:27Z
dc.date.issued2018-03-28
dc.description.abstractA new theoretical framework is derived for parameterization of subgrid physical processes in atmospheric models; the application to parameterization of convection and boundary layer fluxes is a particular focus. The derivation is based on conditional filtering, which uses a set of quasi-Lagrangian labels to pick out different regions of the fluid, such as convective updrafts and environment, before applying a spatial filter. This results in a set of coupled prognostic equations for the different fluid components, including subfilter-scale flux terms and entrainment/detrainment terms. The framework can accommodate different types of approaches to parameterization, such as local turbulence approaches and mass-flux approaches. It provides a natural way to distinguish between local and nonlocal transport processes, and makes a clearer conceptual link to schemes based on coherent structures such as convective plumes or thermals than the straightforward application of a filter without the quasi-Lagrangian labels. The framework should facilitate the unification of different approaches to parameterization by highlighting the different approximations made, and by helping to ensure that budgets of energy, entropy, and momentum are handled consistently and without double counting. The framework also points to various ways in which traditional parameterizations might be extended, for example by including additional prognostic variables. One possibility is to allow the large-scale dynamics of all the fluid components to be handled by the dynamical core. This has the potential to improve several aspects of convection-dynamics coupling, such as dynamical memory, the location of compensating subsidence, and the propagation of convection to neighboring grid columns.en_GB
dc.identifier.citationPublished online 28 March 2018.en_GB
dc.identifier.doi10.1175/JAS-D-17-0130.1
dc.identifier.urihttp://hdl.handle.net/10871/30710
dc.language.isoenen_GB
dc.publisherAmerican Meteorological Societyen_GB
dc.rights.embargoreasonUnder embargo until 28 September 2018 in compliance with publisher policy.en_GB
dc.rights© 2017 American Meteorological Society.
dc.titleA framework for convection and boundary layer parameterization derived from conditional filteringen_GB
dc.typeArticleen_GB
dc.identifier.issn1520-0469
dc.descriptionThis is the author accepted manuscript. The final version is available from American Meteorological Society via the DOI in this record.en_GB
dc.identifier.journalJournal of the Atmospheric Sciencesen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record