Show simple item record

dc.contributor.authorDurrant, CJ
dc.contributor.authorShelford, LR
dc.contributor.authorValkass, RAJ
dc.contributor.authorHicken, RJ
dc.contributor.authorFigueroa, AI
dc.contributor.authorBaker, AA
dc.contributor.authorvan der Laan, G
dc.contributor.authorDuffy, LB
dc.contributor.authorShafer, P
dc.contributor.authorKlewe, C
dc.contributor.authorArenholz, E
dc.contributor.authorCavill, SA
dc.contributor.authorChildress, JR
dc.contributor.authorKatine, JA
dc.date.accessioned2017-12-21T09:51:57Z
dc.date.issued2017-10-18
dc.description.abstractSpin pumping has been studied within Ta / Ag / Ni 81 Fe 19 (0–5 nm) / Ag (6 nm) / Co 2 MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni 81 Fe 19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co 2 MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfer torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. This study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.en_GB
dc.description.sponsorshipThe authors gratefully acknowledge the support of EPSRC Grant No. EP/J018767/1, and the award of the Exeter-Brown Scholarship in High Frequency Spintronics to C.J.D.en_GB
dc.identifier.citationVol. 96, article 144421en_GB
dc.identifier.doi10.1103/PhysRevB.96.144421
dc.identifier.urihttp://hdl.handle.net/10871/30741
dc.language.isoenen_GB
dc.publisherAmerican Physical Societyen_GB
dc.rights© 2017 American Physical Societyen_GB
dc.subjectFerromagnetismen_GB
dc.subjectMagnetotransporten_GB
dc.subjectSpin currenten_GB
dc.subjectSpin polarizationen_GB
dc.subjectSpin pumpingen_GB
dc.subjectSpin relaxationen_GB
dc.subjectSpin transfer torqueen_GB
dc.subjectSpin valvesen_GB
dc.subjectFerromagnetic resonanceen_GB
dc.titleDependence of spin pumping and spin transfer torque upon Ni81Fe19 thickness in Ta/Ag/Ni81Fe19/Ag/Co2MnGe/Ag/Ta spin-valve structuresen_GB
dc.typeArticleen_GB
dc.date.available2017-12-21T09:51:57Z
dc.identifier.issn2469-9950
exeter.article-numberARTN 144421en_GB
dc.descriptionThis is the final version of the article. Available from American Physical Society via the DOI in this record.en_GB
dc.identifier.journalPhysical Review Ben_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record