Show simple item record

dc.contributor.authorLi, W
dc.contributor.authorCiais, P
dc.contributor.authorPeng, S
dc.contributor.authorYue, C
dc.contributor.authorWang, Y
dc.contributor.authorThurner, M
dc.contributor.authorSaatchi, SS
dc.contributor.authorArneth, A
dc.contributor.authorAvitabile, V
dc.contributor.authorCarvalhais, N
dc.contributor.authorHarper, AB
dc.contributor.authorKato, E
dc.contributor.authorKoven, C
dc.contributor.authorLiu, YY
dc.contributor.authorNabel, JEMS
dc.contributor.authorPan, Y
dc.contributor.authorPongratz, J
dc.contributor.authorPoulter, B
dc.contributor.authorPugh, TAM
dc.contributor.authorSantoro, M
dc.contributor.authorSitch, S
dc.contributor.authorStocker, BD
dc.contributor.authorViovy, N
dc.contributor.authorWiltshire, A
dc.contributor.authorYousefpour, R
dc.contributor.authorZaehle, S
dc.date.accessioned2018-01-12T15:25:08Z
dc.date.issued2017-11-14
dc.description.abstractThe use of dynamic global vegetation models (DGVMs) to estimate CO2 emissions from land-use and land-cover change (LULCC) offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we propose a new method of using satellite- and inventory-based biomass observations to constrain historical cumulative LULCC emissions (ELUCc) from an ensemble of nine DGVMs based on emerging relationships between simulated vegetation biomass and ELUCc. This method is applicable on the global and regional scale. The original DGVM estimates of ELUCc range from 94 to 273PgC during 1901-2012. After constraining by current biomass observations, we derive a best estimate of 155±50PgC (1σ Gaussian error). The constrained LULCC emissions are higher than prior DGVM values in tropical regions but significantly lower in North America. Our emergent constraint approach independently verifies the median model estimate by biomass observations, giving support to the use of this estimate in carbon budget assessments. The uncertainty in the constrained ELUCc is still relatively large because of the uncertainty in the biomass observations, and thus reduced uncertainty in addition to increased accuracy in biomass observations in the future will help improve the constraint. This constraint method can also be applied to evaluate the impact of land-based mitigation activities.en_GB
dc.description.sponsorshipWei Li, Chao Yue, Thomas A. M. Pugh and Almut Arneth were supported by the project LUC4C funded by the European Commission (grant no. 603542). Philippe Ciais and Shushi Peng acknowledge support from the European Research Council through Synergy grant ERC-2013-SyG-610028 “IMBALANCE-P”. Julia Pongratz, Julia E. M. S. Nabel and Rasoul Yousefpour were supported by the German Research Foundation’s Emmy Noether Program (PO 1751/1-1). Benjamin D. Stocker was supported by the Swiss National Science Foundation and FP7 funding through project EMBRACE (282672). Anna B. Harper was supported by the UK Natural Environment Research Council Joint Weather and Climate Research Programme. Martin Thurner acknowledges funding from the Vetenskapsrådet (grant no. 621-2014-4266 of the Swedish Research Council).en_GB
dc.identifier.citationVol. 14, pp. 5053 - 5067en_GB
dc.identifier.doi10.5194/bg-14-5053-2017
dc.identifier.urihttp://hdl.handle.net/10871/30938
dc.language.isoenen_GB
dc.publisherEuropean Geosciences Union (EGU) / Copernicus Publicationsen_GB
dc.relation.sourceThe biomass maps and model outputs can be freely accessed by following the instructions in the original publications. All the biomass-constrained LULCC emission data can be freely obtained from Wei Li (email: wei.li@lsce.ipsl.fr).en_GB
dc.rights© Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License: https://creativecommons.org/licenses/by/3.0/en_GB
dc.titleLand-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observationsen_GB
dc.typeArticleen_GB
dc.date.available2018-01-12T15:25:08Z
dc.identifier.issn1726-4170
dc.descriptionThis is the final version of the article. Available from EGU via the DOI in this record.en_GB
dc.identifier.journalBiogeosciencesen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record