Show simple item record

dc.contributor.authorKraus, S
dc.contributor.authorHofmann, K-H
dc.contributor.authorMalbet, F
dc.contributor.authorMeilland, A
dc.contributor.authorNatta, A
dc.contributor.authorSchertl, D
dc.contributor.authorStee, P
dc.contributor.authorWeigelt, G
dc.date.accessioned2018-01-15T14:35:26Z
dc.date.issued2009-12
dc.description.abstractContext. Unveiling the structure of the disks around intermediate-mass pre-main-sequence stars (Herbig Ae/Be stars) is essential for our understanding of the star and planet formation process. In particular, models predict that in the innermost AU around the star, the dust disk forms a “puffed-up” inner rim, which should result in a strongly asymmetric brightness distribution for disks seen under intermediate inclination. Aims. Our aim is to constrain the sub-AU geometry of the inner disk around the Herbig Ae star R CrA and search for the predicted asymmetries. Methods. Using the VLTI/AMBER long-baseline interferometer, we obtained 24 near-infrared (H- and K-band) spectrointerferometric observations on R CrA. Observing with three telescopes in a linear array configuration, each data set samples three equally spaced points in the visibility function, providing direct information about the radial intensity profile. In addition, the observations cover a wide position angle range (∼ 97◦ ), also probing the position angle dependence of the source brightness distribution. Results. In the derived visibility function, we detect the signatures of an extended (Gaussian FWHM ∼ 25 mas) and a compact component (Gaussian FWHM ∼ 5.8 mas), with the compact component contributing about two-thirds of the total flux (both in H- and K-band). The brightness distribution is highly asymmetric, as indicated by the strong closure phases (up to ∼ 40◦ ) and the detected position angle dependence of the visibilities and closure phases. To interpret these asymmetries, we employ various geometric as well as physical models, including a binary model, a skewed ring model, and a puffed-up inner rim model with a vertical or curved rim shape. For the binary and vertical rim model, no acceptable fits could be obtained. On the other hand, the skewed ring model and the curved puffed-up inner rim model allow us to simultaneously reproduce the measured visibilities and closure phases. From these models we derive the location of the dust sublimation radius (∼ 0.4 AU), the disk inclination angle (∼ 35◦ ), and a north-southern disk orientation (PA∼180-190◦ ). Our curved puffed-up rim model can reasonably well reproduce the interferometric observables and the SED simultaneously and suggests a luminosity of ∼ 29 L and the presence of relatively large (& 1.2 µm) Silicate dust grains. Our study also reveals significant deviations between the measured interferometric observables and the employed puffed-up inner rim models, providing important constraints for future refinements of these theoretical models. Perpendicular to the disk, two bow shock-like structures appear in the associated reflection nebula NGC 6729, suggesting that the detected sub-AU size disk is the driving engine of a large-scale outflow. Conclusions. Detecting, for the first time, strong non-localized asymmetries in the inner regions of a Herbig Ae disk, our study supports the existence of a puffed-up inner rim in YSO disks.en_GB
dc.identifier.citationVol. 508, pp. 787-803en_GB
dc.identifier.doi10.1051/0004-6361/200912990
dc.identifier.urihttp://hdl.handle.net/10871/31020
dc.language.isoenen_GB
dc.publisherEDP Sciencesen_GB
dc.subjectstars: pre-main-sequenceen_GB
dc.subjectcircumstellar matteren_GB
dc.subjectaccretion, accretion disksen_GB
dc.subjectoutflowsen_GB
dc.subjectindividual: R CrAen_GB
dc.subjectplanetary systems: protoplanetary disksen_GB
dc.subjecttechniques: interferometricen_GB
dc.titleRevealing the sub-AU asymmetries of the inner dust rim in the disk around the Herbig Ae star R Coronae Austrinaeen_GB
dc.typeArticleen_GB
dc.date.available2018-01-15T14:35:26Z
dc.descriptionThis is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.en_GB
dc.identifier.journalAstronomy and Astrophysicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record