Show simple item record

dc.contributor.authorJamal, W
dc.contributor.authorDas, S
dc.contributor.authorOprescu, I-A
dc.contributor.authorMaharatna, K
dc.date.accessioned2018-01-19T15:57:40Z
dc.date.issued2014-09-04
dc.description.abstractThis paper proposes a stochastic model using the concept of Markov chains for the inter-state transitions of the millisecond order quasi-stable phase synchronized patterns or synchrostates, found in multi-channel Electroencephalogram (EEG) signals. First and second order transition probability matrices are estimated for Markov chain modelling from 100 trials of 128-channel EEG signals during two different face perception tasks. Prediction accuracies with such finite Markov chain models for synchrostate transition are also compared, under a data-partitioning based cross-validation scheme.en_GB
dc.description.sponsorshipThe work presented in this paper was supported by FP7 EU funded MICHELANGELO project, Grant Agreement #288241.en_GB
dc.identifier.citationVol. 22 (2), pp. 149 - 152en_GB
dc.identifier.doi10.1109/LSP.2014.2352251
dc.identifier.urihttp://hdl.handle.net/10871/31112
dc.language.isoenen_GB
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_GB
dc.rights© 2014 IEEEen_GB
dc.subjectMarkov processesen_GB
dc.subjectBrain modelsen_GB
dc.subjectElectroencephalographyen_GB
dc.subjectFaceen_GB
dc.subjectSwitchesen_GB
dc.subjectHidden Markov modelsen_GB
dc.titlePrediction of Synchrostate Transitions in EEG Signals Using Markov Chain Modelsen_GB
dc.typeArticleen_GB
dc.date.available2018-01-19T15:57:40Z
dc.descriptionThis is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.en_GB
dc.identifier.journalIEEE Signal Processing Lettersen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record