Show simple item record

dc.contributor.authorWalesby, KT
dc.contributor.authorBeare, RJ
dc.date.accessioned2018-01-26T10:23:32Z
dc.date.issued2016-05-04
dc.description.abstractThe accurate representation of the stable boundary layer (SBL) is a key issue for weather prediction and climate models. The SBL exerts an important influence in controlling heat, moisture and momentum fluxes between the surface and the rest of the atmosphere. Some of the world's most stably stratified boundary layers develop on the Antarctic continent. Previous work investigating SBLs has tended to take either a purely observational or purely modelling-based approach. Here, a novel three-way methodology has been developed which uses observations from an Antarctic site, alongside large-eddy simulation (LES) and single-column model (SCM) techniques to examine a case-study. Reasonable agreement was generally achieved between the LES and observations. The choice of stability function is an important decision for column-based parametrizations of the SBL. Four schemes were tested in the SCM, providing persuasive evidence for the use of shorter-tailed stability functions. The LES data were also used to extract implied stability functions. These experiments reinforced the conclusion that shorter-tailed stability functions offered improved performance for the Antarctic SBL. This approach represents a powerful framework for verifying SCM and LES results against a range of insitu observations.en_GB
dc.identifier.citationVol. 142 (699), pp. 2373 - 2385en_GB
dc.identifier.doi10.1002/qj.2830
dc.identifier.urihttp://hdl.handle.net/10871/31190
dc.language.isoenen_GB
dc.publisherWiley / Royal Meteorological Societyen_GB
dc.rights© 2016 Royal Meteorological Societyen_GB
dc.subjectstable boundary layersen_GB
dc.subjectturbulence parametrizationsen_GB
dc.subjectAntarctic boundary layersen_GB
dc.titleParametrizing the Antarctic stable boundary layer: synthesizing models and observationsen_GB
dc.typeArticleen_GB
dc.date.available2018-01-26T10:23:32Z
dc.identifier.issn0035-9009
dc.descriptionThis is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.en_GB
dc.identifier.journalQuarterly Journal of the Royal Meteorological Societyen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record