Show simple item record

dc.contributor.authorDaum, B
dc.contributor.authorQuax, TEF
dc.contributor.authorSachse, M
dc.contributor.authorMills, DJ
dc.contributor.authorReimann, J
dc.contributor.authorYildiz, O
dc.contributor.authorHader, S
dc.contributor.authorSaveanu, C
dc.contributor.authorForterre, P
dc.contributor.authorAlbers, S-V
dc.contributor.authorKuhlbrandt, W
dc.contributor.authorPrangishvili, D
dc.date.accessioned2018-02-13T14:51:51Z
dc.date.issued2014-03-11
dc.description.abstractViruses have developed a wide range of strategies to escape from the host cells in which they replicate. For egress some archaeal viruses use a pyramidal structure with sevenfold rotational symmetry. Virus-associated pyramids (VAPs) assemble in the host cell membrane from the virus-encoded protein PVAP and open at the end of the infection cycle. We characterize this unusual supramolecular assembly using a combination of genetic, biochemical, and electron microscopic techniques. By whole-cell electron cryotomography, we monitored morphological changes in virus-infected host cells. Subtomogram averaging reveals the VAP structure. By heterologous expression of PVAP in cells from all three domains of life, we demonstrate that the protein integrates indiscriminately into virtually any biological membrane, where it forms sevenfold pyramids. We identify the protein domains essential for VAP formation in PVAP truncation mutants by their ability to remodel the cell membrane. Self-assembly of PVAP into pyramids requires at least two different, in-plane and out-of-plane, protein interactions. Our findings allow us to propose a model describing how PVAP arranges to form sevenfold pyramids and suggest how this small, robust protein may be used as a general membrane-remodeling system.en_GB
dc.description.sponsorshipD.P. and T.E.F.Q. received financial support from L’Agence Nationale de la Recherche. W.K. and B.D. received financial support from the Max Planck Society.en_GB
dc.identifier.citationVol. 111 (10), pp. 3829 - 3834en_GB
dc.identifier.doi10.1073/pnas.1319245111
dc.identifier.urihttp://hdl.handle.net/10871/31454
dc.language.isoenen_GB
dc.publisherNational Academy of Sciencesen_GB
dc.relation.sourceThe map reported in this paper has been deposited in the Electron Microscopy Data Bank, www.emdatabank.org (accession no. 5844).en_GB
dc.rightsFreely available online through the PNAS open access option.en_GB
dc.subjectarchaeaen_GB
dc.subjectarcheovirusen_GB
dc.subjectviral egressen_GB
dc.titleSelf-assembly of the general membrane-remodeling protein PVAP into sevenfold virus-associated pyramidsen_GB
dc.typeArticleen_GB
dc.date.available2018-02-13T14:51:51Z
dc.identifier.issn0027-8424
dc.descriptionThis is the final version of the article. Available from National Academy of Sciences via the DOI in this record.en_GB
dc.identifier.journalProceedings of the National Academy of Sciencesen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record