Show simple item record

dc.contributor.authorHughes, TH
dc.contributor.authorSmith, MC
dc.date.accessioned2018-02-16T10:34:43Z
dc.date.issued2015-12-11
dc.description.abstractClassical RLC realization procedures (e.g. Bott–Duffin) result in networks with uncontrollable driving-point behaviors. With this motivation, we use the behavioral framework of Jan Willems to provide a rigorous analysis of RLC networks and passive behaviors. We show that the driving-point behavior of a general RLC network is stabilizable, and controllable if the network contains only two types of elements. In contrast, we show that the full behavior of the RLC network need not be stabilizable, but is marginally stabilizable. These results allow us to formalize the phasor approach to RLC networks using the notion of sinusoidal trajectories, and to address an assumption of conventional phasor analysis. Finally, we show that any passive behavior with a hybrid representation is stabilizable. This paper relies substantially on the fundamental work of our late friend and colleague Jan Willems to whom the paper is dedicated.en_GB
dc.identifier.citationVol. 101, pp. 58 - 66en_GB
dc.identifier.doi10.1016/j.sysconle.2015.09.011
dc.identifier.urihttp://hdl.handle.net/10871/31526
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights© 2015 Elsevier B.V. All rights reserved.en_GB
dc.subjectBehaviorsen_GB
dc.subjectElectric circuitsen_GB
dc.subjectMechanical networksen_GB
dc.subjectPassivityen_GB
dc.subjectControllabilityen_GB
dc.subjectStabilizabilityen_GB
dc.titleControllability of linear passive network behaviorsen_GB
dc.typeArticleen_GB
dc.date.available2018-02-16T10:34:43Z
dc.identifier.issn0167-6911
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.identifier.journalSystems and Control Lettersen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record